pandas.MultiIndex
-
class pandas.MultiIndex
[source] -
A multi-level, or hierarchical, index object for pandas objects
Parameters: levels : sequence of arrays
The unique labels for each level
labels : sequence of arrays
Integers for each level designating which label at each location
sortorder : optional int
Level of sortedness (must be lexicographically sorted by that level)
names : optional sequence of objects
Names for each of the index levels. (name is accepted for compat)
copy : boolean, default False
Copy the meta-data
verify_integrity : boolean, default True
Check that the levels/labels are consistent and valid
See also
-
MultiIndex.from_arrays
- Convert list of arrays to MultiIndex
-
MultiIndex.from_product
- Create a MultiIndex from the cartesian product of iterables
-
MultiIndex.from_tuples
- Convert list of tuples to a MultiIndex
-
Index
- The base pandas Index type
Notes
See the user guide for more.
Examples
A new
MultiIndex
is typically constructed using one of the helper methodsMultiIndex.from_arrays()
,MultiIndex.from_product()
andMultiIndex.from_tuples()
. For example (using.from_arrays
):>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex(levels=[[1, 2], ['blue', 'red']], labels=[[0, 0, 1, 1], [1, 0, 1, 0]], names=['number', 'color'])
See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods.
Attributes
T
return the transpose, which is by definition self asi8
base
return the base object if the memory of the underlying data is data
return the data pointer of the underlying data dtype
dtype_str
empty
flags
has_duplicates
hasnans
inferred_type
is_all_dates
is_monotonic
is_monotonic_decreasing
is_monotonic_increasing
is_unique
itemsize
return the size of the dtype of the item of the underlying data labels
levels
levshape
lexsort_depth
name
names
Names of levels in MultiIndex nbytes
ndim
return the number of dimensions of the underlying data, nlevels
shape
return a tuple of the shape of the underlying data size
return the number of elements in the underlying data strides
return the strides of the underlying data values
Methods
all
([other])any
([other])append
(other)Append a collection of Index options together argmax
([axis])return a ndarray of the maximum argument indexer argmin
([axis])return a ndarray of the minimum argument indexer argsort
(*args, **kwargs)asof
(label)For a sorted index, return the most recent label up to and including the passed label. asof_locs
(where, mask)where : array of timestamps astype
(dtype[, copy])Create an Index with values cast to dtypes. contains
(key)return a boolean if this key is IN the index copy
([names, dtype, levels, labels, deep, ...])Make a copy of this object. delete
(loc)Make new index with passed location deleted difference
(other)Compute sorted set difference of two MultiIndex objects drop
(labels[, level, errors])Make new MultiIndex with passed list of labels deleted drop_duplicates
([keep])Return Index with duplicate values removed droplevel
([level])Return Index with requested level removed. dropna
([how])Return Index without NA/NaN values duplicated
([keep])Return boolean np.ndarray denoting duplicate values equal_levels
(other)Return True if the levels of both MultiIndex objects are the same equals
(other)Determines if two MultiIndex objects have the same labeling information factorize
([sort, na_sentinel])Encode the object as an enumerated type or categorical variable fillna
([value, downcast])fillna is not implemented for MultiIndex format
([space, sparsify, adjoin, names, ...])from_arrays
(arrays[, sortorder, names])Convert arrays to MultiIndex from_product
(iterables[, sortorder, names])Make a MultiIndex from the cartesian product of multiple iterables from_tuples
(tuples[, sortorder, names])Convert list of tuples to MultiIndex get_duplicates
()get_indexer
(target[, method, limit, tolerance])Compute indexer and mask for new index given the current index. get_indexer_for
(target, **kwargs)guaranteed return of an indexer even when non-unique get_indexer_non_unique
(target)Compute indexer and mask for new index given the current index. get_level_values
(level)Return vector of label values for requested level, equal to the length of the index. get_loc
(key[, method])Get location for a label or a tuple of labels as an integer, slice or boolean mask. get_loc_level
(key[, level, drop_level])Get both the location for the requested label(s) and the resulting sliced index. get_locs
(seq)Get location for a given label/slice/list/mask or a sequence of such as an array of integers. get_major_bounds
([start, end, step, kind])For an ordered MultiIndex, compute the slice locations for input labels. get_slice_bound
(label, side, kind)get_value
(series, key)get_values
()return the underlying data as an ndarray groupby
(values)Group the index labels by a given array of values. holds_integer
()identical
(other)Similar to equals, but check that other comparable attributes are insert
(loc, item)Make new MultiIndex inserting new item at location intersection
(other)Form the intersection of two MultiIndex objects, sorting if possible is_
(other)More flexible, faster check like is
but that works through viewsis_boolean
()is_categorical
()is_floating
()is_integer
()is_interval
()is_lexsorted
()Return True if the labels are lexicographically sorted is_lexsorted_for_tuple
(tup)is_mixed
()is_numeric
()is_object
()is_type_compatible
(kind)isin
(values[, level])Compute boolean array of whether each index value is found in the passed set of values. isna
()Detect missing values isnull
()Detect missing values item
()return the first element of the underlying data as a python join
(other[, how, level, return_indexers, sort])this is an internal non-public method map
(mapper)Apply mapper function to an index. max
()The maximum value of the object memory_usage
([deep])Memory usage of my values min
()The minimum value of the object notna
()Inverse of isna notnull
()Inverse of isna nunique
([dropna])Return number of unique elements in the object. putmask
(mask, value)return a new Index of the values set with the mask ravel
([order])return an ndarray of the flattened values of the underlying data reindex
(target[, method, level, limit, ...])Create index with target’s values (move/add/delete values as necessary) remove_unused_levels
()create a new MultiIndex from the current that removing rename
(names[, level, inplace])Set new names on index. reorder_levels
(order)Rearrange levels using input order. repeat
(repeats, *args, **kwargs)reshape
(*args, **kwargs)NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error. searchsorted
(value[, side, sorter])Find indices where elements should be inserted to maintain order. set_labels
(labels[, level, inplace, ...])Set new labels on MultiIndex. set_levels
(levels[, level, inplace, ...])Set new levels on MultiIndex. set_names
(names[, level, inplace])Set new names on index. set_value
(arr, key, value)Fast lookup of value from 1-dimensional ndarray. shift
([periods, freq])Shift Index containing datetime objects by input number of periods and slice_indexer
([start, end, step, kind])For an ordered Index, compute the slice indexer for input labels and slice_locs
([start, end, step, kind])For an ordered MultiIndex, compute the slice locations for input labels. sort
(*args, **kwargs)sort_values
([return_indexer, ascending])Return sorted copy of Index sortlevel
([level, ascending, sort_remaining])Sort MultiIndex at the requested level. str
alias of StringMethods
summary
([name])swaplevel
([i, j])Swap level i with level j. symmetric_difference
(other[, result_name])Compute the symmetric difference of two Index objects. take
(indices[, axis, allow_fill, fill_value])return a new MultiIndex of the values selected by the indices to_datetime
([dayfirst])DEPRECATED: use pandas.to_datetime()
instead.to_frame
([index])Create a DataFrame with the levels of the MultiIndex as columns. to_hierarchical
(n_repeat[, n_shuffle])Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle. to_native_types
([slicer])Format specified values of self
and return them.to_series
(**kwargs)Create a Series with both index and values equal to the index keys tolist
()Return a list of the values. transpose
(*args, **kwargs)return the transpose, which is by definition self truncate
([before, after])Slice index between two labels / tuples, return new MultiIndex union
(other)Form the union of two MultiIndex objects, sorting if possible unique
()Return unique values in the object. value_counts
([normalize, sort, ascending, ...])Returns object containing counts of unique values. view
([cls])this is defined as a copy with the same identity where
(cond[, other]) -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.MultiIndex.html