pandas.Series.product
-
Series.product(axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
[source] -
Return the product of the values for the requested axis
Parameters: axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values when computing the result.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
min_count : int, default 0
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.New in version 0.22.0: Added with the default being 1. This means the sum or product of an all-NA or empty series is
NaN
.Returns: prod : scalar or Series (if level specified)
Examples
By default, the product of an empty or all-NA Series is
1
>>> pd.Series([]).prod() 1.0
This can be controlled with the
min_count
parameter>>> pd.Series([]).prod(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).prod() 1.0
>>> pd.Series([np.nan]).sum(min_count=1) nan
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.Series.product.html