Computational tools
Statistical Functions
Percent Change
Series
, DataFrame
, and Panel
all have a method pct_change
to compute the percent change over a given number of periods (using fill_method
to fill NA/null values before computing the percent change).
In [1]: ser = pd.Series(np.random.randn(8)) In [2]: ser.pct_change() Out[2]: 0 NaN 1 -1.602976 2 4.334938 3 -0.247456 4 -2.067345 5 -1.142903 6 -1.688214 7 -9.759729 dtype: float64
In [3]: df = pd.DataFrame(np.random.randn(10, 4)) In [4]: df.pct_change(periods=3) Out[4]: 0 1 2 3 0 NaN NaN NaN NaN 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 3 -0.218320 -1.054001 1.987147 -0.510183 4 -0.439121 -1.816454 0.649715 -4.822809 5 -0.127833 -3.042065 -5.866604 -1.776977 6 -2.596833 -1.959538 -2.111697 -3.798900 7 -0.117826 -2.169058 0.036094 -0.067696 8 2.492606 -1.357320 -1.205802 -1.558697 9 -1.012977 2.324558 -1.003744 -0.371806
Covariance
The Series
object has a method cov
to compute covariance between series (excluding NA/null values).
In [5]: s1 = pd.Series(np.random.randn(1000)) In [6]: s2 = pd.Series(np.random.randn(1000)) In [7]: s1.cov(s2) Out[7]: 0.00068010881743110871
Analogously, DataFrame
has a method cov
to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.
Note
Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.
In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e']) In [9]: frame.cov() Out[9]: a b c d e a 1.000882 -0.003177 -0.002698 -0.006889 0.031912 b -0.003177 1.024721 0.000191 0.009212 0.000857 c -0.002698 0.000191 0.950735 -0.031743 -0.005087 d -0.006889 0.009212 -0.031743 1.002983 -0.047952 e 0.031912 0.000857 -0.005087 -0.047952 1.042487
DataFrame.cov
also supports an optional min_periods
keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.
In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c']) In [11]: frame.loc[frame.index[:5], 'a'] = np.nan In [12]: frame.loc[frame.index[5:10], 'b'] = np.nan In [13]: frame.cov() Out[13]: a b c a 1.123670 -0.412851 0.018169 b -0.412851 1.154141 0.305260 c 0.018169 0.305260 1.301149 In [14]: frame.cov(min_periods=12)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.22.0/computation.html