macros
This module contains the interface to the compiler's abstract syntax tree (AST). Macros operate on this tree.
See also:
The AST in Nim
This section describes how the AST is modelled with Nim's type system. The AST consists of nodes (NimNode
) with a variable number of children. Each node has a field named kind
which describes what the node contains:
type NimNodeKind = enum ## kind of a node; only explanatory nnkNone, ## invalid node kind nnkEmpty, ## empty node nnkIdent, ## node contains an identifier nnkIntLit, ## node contains an int literal (example: 10) nnkStrLit, ## node contains a string literal (example: "abc") nnkNilLit, ## node contains a nil literal (example: nil) nnkCaseStmt, ## node represents a case statement ... ## many more NimNode = ref NimNodeObj NimNodeObj = object case kind: NimNodeKind ## the node's kind of nnkNone, nnkEmpty, nnkNilLit: discard ## node contains no additional fields of nnkCharLit..nnkUInt64Lit: intVal: BiggestInt ## the int literal of nnkFloatLit..nnkFloat64Lit: floatVal: BiggestFloat ## the float literal of nnkStrLit..nnkTripleStrLit, nnkCommentStmt, nnkIdent, nnkSym: strVal: string ## the string literal else: sons: seq[NimNode] ## the node's sons (or children)
For the NimNode
type, the []
operator has been overloaded: n[i]
is n
's i
-th child.
To specify the AST for the different Nim constructs, the notation nodekind(son1, son2, ...)
or nodekind(value)
or nodekind(field=value)
is used.
Some child may be missing. A missing child is a node of kind nnkEmpty
; a child can never be nil.
Leaf nodes/Atoms
A leaf of the AST often corresponds to a terminal symbol in the concrete syntax. Note that the default float
in Nim maps to float64
such that the default AST for a float is nnkFloat64Lit
as below.
Nim expression | Corresponding AST |
---|---|
42 |
nnkIntLit(intVal = 42) |
42'i8 |
nnkInt8Lit(intVal = 42) |
42'i16 |
nnkInt16Lit(intVal = 42) |
42'i32 |
nnkInt32Lit(intVal = 42) |
42'i64 |
nnkInt64Lit(intVal = 42) |
42'u8 |
nnkUInt8Lit(intVal = 42) |
42'u16 |
nnkUInt16Lit(intVal = 42) |
42'u32 |
nnkUInt32Lit(intVal = 42) |
42'u64 |
nnkUInt64Lit(intVal = 42) |
42.0 |
nnkFloat64Lit(floatVal = 42.0) |
42.0'f32 |
nnkFloat32Lit(floatVal = 42.0) |
42.0'f64 |
nnkFloat64Lit(floatVal = 42.0) |
"abc" |
nnkStrLit(strVal = "abc") |
r"abc" |
nnkRStrLit(strVal = "abc") |
"""abc""" |
nnkTripleStrLit(strVal = "abc") |
' ' |
nnkCharLit(intVal = 32) |
nil |
nnkNilLit() |
myIdentifier |
nnkIdent(strVal = "myIdentifier") |
myIdentifier |
after lookup pass: nnkSym(strVal = "myIdentifier", ...)
|
Identifiers are nnkIdent
nodes. After the name lookup pass these nodes get transferred into nnkSym
nodes.
Calls/expressions
Command call
Concrete syntax:
echo "abc", "xyz"
AST:
nnkCommand( nnkIdent("echo"), nnkStrLit("abc"), nnkStrLit("xyz") )
Call with ()
Concrete syntax:
echo("abc", "xyz")
AST:
nnkCall( nnkIdent("echo"), nnkStrLit("abc"), nnkStrLit("xyz") )
Infix operator call
Concrete syntax:
"abc" & "xyz"
AST:
nnkInfix( nnkIdent("&"), nnkStrLit("abc"), nnkStrLit("xyz") )
Note that with multiple infix operators, the command is parsed by operator precedence.
Concrete syntax:
5 + 3 * 4
AST:
nnkInfix( nnkIdent("+"), nnkIntLit(5), nnkInfix( nnkIdent("*"), nnkIntLit(3), nnkIntLit(4) ) )
As a side note, if you choose to use infix operators in a prefix form, the AST behaves as a parenthetical function call with nnkAccQuoted
, as follows:
Concrete syntax:
`+`(3, 4)
AST:
nnkCall( nnkAccQuoted( nnkIdent("+") ), nnkIntLit(3), nnkIntLit(4) )
Prefix operator call
Concrete syntax:
? "xyz"
AST:
nnkPrefix( nnkIdent("?"), nnkStrLit("abc") )
Postfix operator call
Note: There are no postfix operators in Nim. However, the nnkPostfix
node is used for the asterisk export marker *
:
Concrete syntax:
identifier*
AST:
nnkPostfix( nnkIdent("*"), nnkIdent("identifier") )
Call with named arguments
Concrete syntax:
writeLine(file=stdout, "hallo")
AST:
nnkCall( nnkIdent("writeLine"), nnkExprEqExpr( nnkIdent("file"), nnkIdent("stdout") ), nnkStrLit("hallo") )
Call with raw string literal
This is used, for example, in the bindSym
examples here and with re"some regexp"
in the regular expression module.
Concrete syntax:
echo"abc"
AST:
nnkCallStrLit( nnkIdent("echo"), nnkRStrLit("hello") )
Dereference operator []
Concrete syntax:
x[]
AST:
nnkDerefExpr(nnkIdent("x"))
Addr operator
Concrete syntax:
addr(x)
AST:
nnkAddr(nnkIdent("x"))
Cast operator
Concrete syntax:
cast[T](x)
AST:
nnkCast(nnkIdent("T"), nnkIdent("x"))
Object access operator .
Concrete syntax:
x.y
AST:
nnkDotExpr(nnkIdent("x"), nnkIdent("y"))
If you use Nim's flexible calling syntax (as in x.len()
), the result is the same as above but wrapped in an nnkCall
.
Array access operator []
Concrete syntax:
x[y]
AST:
nnkBracketExpr(nnkIdent("x"), nnkIdent("y"))
Parentheses
Parentheses for affecting operator precedence or tuple construction are built with the nnkPar
node.
Concrete syntax:
(1, 2, (3))
AST:
nnkPar(nnkIntLit(1), nnkIntLit(2), nnkPar(nnkIntLit(3)))
Curly braces
Curly braces are used as the set constructor.
Concrete syntax:
{1, 2, 3}
AST:
nnkCurly(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3))
When used as a table constructor, the syntax is different.
Concrete syntax:
{a: 3, b: 5}
AST:
nnkTableConstr( nnkExprColonExpr(nnkIdent("a"), nnkIntLit(3)), nnkExprColonExpr(nnkIdent("b"), nnkIntLit(5)) )
Brackets
Brackets are used as the array constructor.
Concrete syntax:
[1, 2, 3]
AST:
nnkBracket(nnkIntLit(1), nnkIntLit(2), nnkIntLit(3))
Ranges
Ranges occur in set constructors, case statement branches, or array slices. Internally, the node kind nnkRange
is used, but when constructing the AST, construction with ..
as an infix operator should be used instead.
Concrete syntax:
1..3
AST:
nnkInfix( nnkIdent(".."), nnkIntLit(1), nnkIntLit(3) )
Example code:
macro genRepeatEcho(): stmt = result = newNimNode(nnkStmtList) var forStmt = newNimNode(nnkForStmt) # generate a for statement forStmt.add(ident("i")) # use the variable `i` for iteration var rangeDef = newNimNode(nnkInfix).add( ident("..")).add( newIntLitNode(3),newIntLitNode(5)) # iterate over the range 3..5 forStmt.add(rangeDef) forStmt.add(newCall(ident("echo"), newIntLitNode(3))) # meat of the loop result.add(forStmt) genRepeatEcho() # gives: # 3 # 3 # 3
If expression
The representation of the if
expression is subtle, but easy to traverse.
Concrete syntax:
if cond1: expr1 elif cond2: expr2 else: expr3
AST:
nnkIfExpr( nnkElifExpr(cond1, expr1), nnkElifExpr(cond2, expr2), nnkElseExpr(expr3) )
Documentation Comments
Double-hash (##
) comments in the code actually have their own format, using strVal
to get and set the comment text. Single-hash (#
) comments are ignored.
Concrete syntax:
## This is a comment ## This is part of the first comment stmt1 ## Yet another
AST:
nnkCommentStmt() # only appears once for the first two lines! stmt1 nnkCommentStmt() # another nnkCommentStmt because there is another comment # (separate from the first)
Pragmas
One of Nim's cool features is pragmas, which allow fine-tuning of various aspects of the language. They come in all types, such as adorning procs and objects, but the standalone emit
pragma shows the basics with the AST.
Concrete syntax:
{.emit: "#include <stdio.h>".}
AST:
nnkPragma( nnkExprColonExpr( nnkIdent("emit"), nnkStrLit("#include <stdio.h>") # the "argument" ) )
As many nnkIdent
appear as there are pragmas between {..}
. Note that the declaration of new pragmas is essentially the same:
Concrete syntax:
{.pragma: cdeclRename, cdecl.}
AST:
nnkPragma( nnkExprColonExpr( nnkIdent("pragma"), # this is always first when declaring a new pragma nnkIdent("cdeclRename") # the name of the pragma ), nnkIdent("cdecl") )
Statements
If statement
The representation of the if statement is subtle, but easy to traverse. If there is no else
branch, no nnkElse
child exists.
Concrete syntax:
if cond1: stmt1 elif cond2: stmt2 elif cond3: stmt3 else: stmt4
AST:
nnkIfStmt( nnkElifBranch(cond1, stmt1), nnkElifBranch(cond2, stmt2), nnkElifBranch(cond3, stmt3), nnkElse(stmt4) )
When statement
Like the if
statement, but the root has the kind nnkWhenStmt
.
Assignment
Concrete syntax:
x = 42
AST:
nnkAsgn(nnkIdent("x"), nnkIntLit(42))
This is not the syntax for assignment when combined with var
, let
, or const
.
Statement list
Concrete syntax:
stmt1 stmt2 stmt3
AST:
nnkStmtList(stmt1, stmt2, stmt3)
Case statement
Concrete syntax:
case expr1 of expr2, expr3..expr4: stmt1 of expr5: stmt2 elif cond1: stmt3 else: stmt4
AST:
nnkCaseStmt( expr1, nnkOfBranch(expr2, nnkRange(expr3, expr4), stmt1), nnkOfBranch(expr5, stmt2), nnkElifBranch(cond1, stmt3), nnkElse(stmt4) )
The nnkElifBranch
and nnkElse
parts may be missing.
While statement
Concrete syntax:
while expr1: stmt1
AST:
nnkWhileStmt(expr1, stmt1)
For statement
Concrete syntax:
for ident1, ident2 in expr1: stmt1
AST:
nnkForStmt(ident1, ident2, expr1, stmt1)
Try statement
Concrete syntax:
try: stmt1 except e1, e2: stmt2 except e3: stmt3 except: stmt4 finally: stmt5
AST:
nnkTryStmt( stmt1, nnkExceptBranch(e1, e2, stmt2), nnkExceptBranch(e3, stmt3), nnkExceptBranch(stmt4), nnkFinally(stmt5) )
Return statement
Concrete syntax:
return expr1
AST:
nnkReturnStmt(expr1)
Yield statement
Like return
, but with nnkYieldStmt
kind.
nnkYieldStmt(expr1)
Discard statement
Like return
, but with nnkDiscardStmt
kind.
nnkDiscardStmt(expr1)
Continue statement
Concrete syntax:
continue
AST:
nnkContinueStmt()
Break statement
Concrete syntax:
break otherLocation
AST:
nnkBreakStmt(nnkIdent("otherLocation"))
If break
is used without a jump-to location, nnkEmpty
replaces nnkIdent
.
Block statement
Concrete syntax:
block name:
AST:
nnkBlockStmt(nnkIdent("name"), nnkStmtList(...))
A block
doesn't need an name, in which case nnkEmpty
is used.
Asm statement
Concrete syntax:
asm """ some asm """
AST:
nnkAsmStmt( nnkEmpty(), # for pragmas nnkTripleStrLit("some asm"), )
Import section
Nim's import
statement actually takes different variations depending on what keywords are present. Let's start with the simplest form.
Concrete syntax:
import math
AST:
nnkImportStmt(nnkIdent("math"))
With except
, we get nnkImportExceptStmt
.
Concrete syntax:
import math except pow
AST:
nnkImportExceptStmt(nnkIdent("math"),nnkIdent("pow"))
Note that import math as m
does not use a different node; rather, we use nnkImportStmt
with as
as an infix operator.
Concrete syntax:
import strutils as su
AST:
nnkImportStmt( nnkInfix( nnkIdent("as"), nnkIdent("strutils"), nnkIdent("su") ) )
From statement
If we use from ... import
, the result is different, too.
Concrete syntax:
from math import pow
AST:
nnkFromStmt(nnkIdent("math"), nnkIdent("pow"))
Using from math as m import pow
works identically to the as
modifier with the import
statement, but wrapped in nnkFromStmt
.
Export statement
When you are making an imported module accessible by modules that import yours, the export
syntax is pretty straightforward.
Concrete syntax:
export unsigned
AST:
nnkExportStmt(nnkIdent("unsigned"))
Similar to the import
statement, the AST is different for export ... except
.
Concrete syntax:
export math except pow # we're going to implement our own exponentiation
AST:
nnkExportExceptStmt(nnkIdent("math"),nnkIdent("pow"))
Include statement
Like a plain import
statement but with nnkIncludeStmt
.
Concrete syntax:
include blocks
AST:
nnkIncludeStmt(nnkIdent("blocks"))
Var section
Concrete syntax:
var a = 3
AST:
nnkVarSection( nnkIdentDefs( nnkIdent("a"), nnkEmpty(), # or nnkIdent(...) if the variable declares the type nnkIntLit(3), ) )
Note that either the second or third (or both) parameters above must exist, as the compiler needs to know the type somehow (which it can infer from the given assignment).
This is not the same AST for all uses of var
. See Procedure declaration for details.
Let section
This is equivalent to var
, but with nnkLetSection
rather than nnkVarSection
.
Concrete syntax:
let a = 3
AST:
nnkLetSection( nnkIdentDefs( nnkIdent("a"), nnkEmpty(), # or nnkIdent(...) for the type nnkIntLit(3), ) )
Const section
Concrete syntax:
const a = 3
AST:
nnkConstSection( nnkConstDef( # not nnkConstDefs! nnkIdent("a"), nnkEmpty(), # or nnkIdent(...) if the variable declares the type nnkIntLit(3), # required in a const declaration! ) )
Type section
Starting with the simplest case, a type
section appears much like var
and const
.
Concrete syntax:
type A = int
AST:
nnkTypeSection( nnkTypeDef( nnkIdent("A"), nnkEmpty(), nnkIdent("int") ) )
Declaring distinct
types is similar, with the last nnkIdent
wrapped in nnkDistinctTy
.
Concrete syntax:
type MyInt = distinct int
AST:
# ... nnkTypeDef( nnkIdent("MyInt"), nnkEmpty(), nnkDistinctTy( nnkIdent("int") ) )
If a type section uses generic parameters, they are treated here:
Concrete syntax:
type A[T] = expr1
AST:
nnkTypeSection( nnkTypeDef( nnkIdent("A"), nnkGenericParams( nnkIdentDefs( nnkIdent("T"), nnkEmpty(), # if the type is declared with options, like # ``[T: SomeInteger]``, they are given here nnkEmpty(), ) ) expr1, ) )
Note that not all nnkTypeDef
utilize nnkIdent
as their parameter. One of the most common uses of type declarations is to work with objects.
Concrete syntax:
type IO = object of RootObj
AST:
# ... nnkTypeDef( nnkIdent("IO"), nnkEmpty(), nnkObjectTy( nnkEmpty(), # no pragmas here nnkOfInherit( nnkIdent("RootObj") # inherits from RootObj ) nnkEmpty() ) )
Nim's object syntax is rich. Let's take a look at an involved example in its entirety to see some of the complexities.
Concrete syntax:
type Obj[T] = object {.inheritable.} name: string case isFat: bool of true: m: array[100_000, T] of false: m: array[10, T]
AST:
# ... nnkObjectTy( nnkPragma( nnkIdent("inheritable") ), nnkEmpty(), nnkRecList( # list of object parameters nnkIdentDefs( nnkIdent("name"), nnkIdent("string"), nnkEmpty() ), nnkRecCase( # case statement within object (not nnkCaseStmt) nnkIdentDefs( nnkIdent("isFat"), nnkIdent("bool"), nnkEmpty() ), nnkOfBranch( nnkIdent("true"), nnkRecList( # again, a list of object parameters nnkIdentDefs( nnkIdent("m"), nnkBracketExpr( nnkIdent("array"), nnkIntLit(100000), nnkIdent("T") ), nnkEmpty() ) ), nnkOfBranch( nnkIdent("false"), nnkRecList( nnkIdentDefs( nnkIdent("m"), nnkBracketExpr( nnkIdent("array"), nnkIntLit(10), nnkIdent("T") ), nnkEmpty() ) ) ) ) ) )
Using an enum
is similar to using an object
.
Concrete syntax:
type X = enum First
AST:
# ... nnkEnumTy( nnkEmpty(), nnkIdent("First") # you need at least one nnkIdent or the compiler complains )
The usage of concept
(experimental) is similar to objects.
Concrete syntax:
type Con = concept x,y,z (x & y & z) is string
AST:
# ... nnkTypeClassTy( # note this isn't nnkConceptTy! nnkArglist( # ... idents for x, y, z ) # ... )
Static types, like static[int]
, use nnkIdent
wrapped in nnkStaticTy
.
Concrete syntax:
type A[T: static[int]] = object
AST:
# ... within nnkGenericParams nnkIdentDefs( nnkIdent("T"), nnkStaticTy( nnkIdent("int") ), nnkEmpty() ) # ...
In general, declaring types mirrors this syntax (i.e., nnkStaticTy
for static
, etc.). Examples follow (exceptions marked by *
):
Nim type | Corresponding AST |
---|---|
static |
nnkStaticTy |
tuple |
nnkTupleTy |
var |
nnkVarTy |
ptr |
nnkPtrTy |
ref |
nnkRefTy |
distinct |
nnkDistinctTy |
enum |
nnkEnumTy |
concept |
nnkTypeClassTy * |
array |
nnkBracketExpr(nnkIdent("array"),... * |
proc |
nnkProcTy |
iterator |
nnkIteratorTy |
object |
nnkObjectTy |
Take special care when declaring types as proc
. The behavior is similar to Procedure declaration
, below, but does not treat nnkGenericParams
. Generic parameters are treated in the type, not the proc
itself.
Concrete syntax:
type MyProc[T] = proc(x: T)
AST:
# ... nnkTypeDef( nnkIdent("MyProc"), nnkGenericParams( # here, not with the proc # ... ) nnkProcTy( # behaves like a procedure declaration from here on nnkFormalParams( # ... ) ) )
The same syntax applies to iterator
(with nnkIteratorTy
), but does not apply to converter
or template
.
Mixin statement
Concrete syntax:
mixin x
AST:
nnkMixinStmt(nnkIdent("x"))
Bind statement
Concrete syntax:
bind x
AST:
nnkBindStmt(nnkIdent("x"))
Procedure declaration
Let's take a look at a procedure with a lot of interesting aspects to get a feel for how procedure calls are broken down.
Concrete syntax:
proc hello*[T: SomeInteger](x: int = 3, y: float32): int {.inline.} = discard
AST:
nnkProcDef( nnkPostfix(nnkIdent("*"), nnkIdent("hello")), # the exported proc name nnkEmpty(), # patterns for term rewriting in templates and macros (not procs) nnkGenericParams( # generic type parameters, like with type declaration nnkIdentDefs( nnkIdent("T"), nnkIdent("SomeInteger"), nnkEmpty() ) ), nnkFormalParams( nnkIdent("int"), # the first FormalParam is the return type. nnkEmpty() if there is none nnkIdentDefs( nnkIdent("x"), nnkIdent("int"), # type type (required for procs, not for templates) nnkIntLit(3) # a default value ), nnkIdentDefs( nnkIdent("y"), nnkIdent("float32"), nnkEmpty() ) ), nnkPragma(nnkIdent("inline")), nnkEmpty(), # reserved slot for future use nnkStmtList(nnkDiscardStmt(nnkEmpty())) # the meat of the proc )
There is another consideration. Nim has flexible type identification for its procs. Even though proc(a: int, b: int)
and proc(a, b: int)
are equivalent in the code, the AST is a little different for the latter.
Concrete syntax:
proc(a, b: int)
AST:
# ...AST as above... nnkFormalParams( nnkEmpty(), # no return here nnkIdentDefs( nnkIdent("a"), # the first parameter nnkIdent("b"), # directly to the second parameter nnkIdent("int"), # their shared type identifier nnkEmpty(), # default value would go here ) ), # ...
When a procedure uses the special var
type return variable, the result is different from that of a var section.
Concrete syntax:
proc hello(): var int
AST:
# ... nnkFormalParams( nnkVarTy( nnkIdent("int") ) )
Iterator declaration
The syntax for iterators is similar to procs, but with nnkIteratorDef
replacing nnkProcDef
.
Concrete syntax:
iterator nonsense[T](x: seq[T]): float {.closure.} = ...
AST:
nnkIteratorDef( nnkIdent("nonsense"), nnkEmpty(), ... )
Converter declaration
A converter is similar to a proc.
Concrete syntax:
converter toBool(x: float): bool
AST:
nnkConverterDef( nnkIdent("toBool"), # ... )
Template declaration
Templates (as well as macros, as we'll see) have a slightly expanded AST when compared to procs and iterators. The reason for this is [term-rewriting macros](manual.html#term-rewriting-macros). Notice the nnkEmpty()
as the second argument to nnkProcDef
and nnkIteratorDef
above? That's where the term-rewriting macros go.
Concrete syntax:
template optOpt{expr1}(a: int): int
AST:
nnkTemplateDef( nnkIdent("optOpt"), nnkStmtList( # instead of nnkEmpty() expr1 ), # follows like a proc or iterator )
If the template does not have types for its parameters, the type identifiers inside nnkFormalParams
just becomes nnkEmpty
.
Macro declaration
Macros behave like templates, but nnkTemplateDef
is replaced with nnkMacroDef
.
Special node kinds
There are several node kinds that are used for semantic checking or code generation. These are accessible from this module, but should not be used. Other node kinds are especially designed to make AST manipulations easier. These are explained here.
To be written.
Imports
Types
NimNodeKind = enum nnkNone, nnkEmpty, nnkIdent, nnkSym, nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit, nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit, nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit, nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit, nnkTripleStrLit, nnkNilLit, nnkComesFrom, nnkDotCall, nnkCommand, nnkCall, nnkCallStrLit, nnkInfix, nnkPrefix, nnkPostfix, nnkHiddenCallConv, nnkExprEqExpr, nnkExprColonExpr, nnkIdentDefs, nnkVarTuple, nnkPar, nnkObjConstr, nnkCurly, nnkCurlyExpr, nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange, nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr, nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted, nnkTableConstr, nnkBind, nnkClosedSymChoice, nnkOpenSymChoice, nnkHiddenStdConv, nnkHiddenSubConv, nnkConv, nnkCast, nnkStaticExpr, nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv, nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange, nnkStringToCString, nnkCStringToString, nnkAsgn, nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit, nnkImportAs, nnkProcDef, nnkMethodDef, nnkConverterDef, nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch, nnkElifBranch, nnkExceptBranch, nnkElse, nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt, nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt, nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection, nnkConstDef, nnkTypeDef, nnkYieldStmt, nnkDefer, nnkTryStmt, nnkFinally, nnkRaiseStmt, nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt, nnkDiscardStmt, nnkStmtList, nnkImportStmt, nnkImportExceptStmt, nnkExportStmt, nnkExportExceptStmt, nnkFromStmt, nnkIncludeStmt, nnkBindStmt, nnkMixinStmt, nnkUsingStmt, nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr, nnkStmtListType, nnkBlockType, nnkWith, nnkWithout, nnkTypeOfExpr, nnkObjectTy, nnkTupleTy, nnkTupleClassTy, nnkTypeClassTy, nnkStaticTy, nnkRecList, nnkRecCase, nnkRecWhen, nnkRefTy, nnkPtrTy, nnkVarTy, nnkConstTy, nnkMutableTy, nnkDistinctTy, nnkProcTy, nnkIteratorTy, nnkSharedTy, nnkEnumTy, nnkEnumFieldDef, nnkArglist, nnkPattern, nnkHiddenTryStmt, nnkClosure, nnkGotoState, nnkState, nnkBreakState, nnkFuncDef, nnkTupleConstr
- Source Edit
NimNodeKinds = set[NimNodeKind]
- Source Edit
NimTypeKind = enum ntyNone, ntyBool, ntyChar, ntyEmpty, ntyAlias, ntyNil, ntyExpr, ntyStmt, ntyTypeDesc, ntyGenericInvocation, ntyGenericBody, ntyGenericInst, ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal, ntyArray, ntyObject, ntyTuple, ntySet, ntyRange, ntyPtr, ntyRef, ntyVar, ntySequence, ntyProc, ntyPointer, ntyOpenArray, ntyString, ntyCString, ntyForward, ntyInt, ntyInt8, ntyInt16, ntyInt32, ntyInt64, ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128, ntyUInt, ntyUInt8, ntyUInt16, ntyUInt32, ntyUInt64, ntyUnused0, ntyUnused1, ntyUnused2, ntyVarargs, ntyUncheckedArray, ntyError, ntyBuiltinTypeClass, ntyUserTypeClass, ntyUserTypeClassInst, ntyCompositeTypeClass, ntyInferred, ntyAnd, ntyOr, ntyNot, ntyAnything, ntyStatic, ntyFromExpr, ntyOptDeprecated, ntyVoid
- Source Edit
TNimTypeKinds {...}{.deprecated.} = set[NimTypeKind]
- Source Edit
NimSymKind = enum nskUnknown, nskConditional, nskDynLib, nskParam, nskGenericParam, nskTemp, nskModule, nskType, nskVar, nskLet, nskConst, nskResult, nskProc, nskFunc, nskMethod, nskIterator, nskConverter, nskMacro, nskTemplate, nskField, nskEnumField, nskForVar, nskLabel, nskStub
- Source Edit
TNimSymKinds {...}{.deprecated.} = set[NimSymKind]
- Source Edit
NimIdent {...}{.deprecated.} = object of RootObj
- Represents a Nim identifier in the AST. Note: This is only rarely useful, for identifier construction from a string use
ident"abc"
. Source Edit NimSym {...}{.deprecated.} = ref NimSymObj
- Represents a Nim symbol in the compiler; a symbol is a looked-up ident. Source Edit
BindSymRule = enum brClosed, ## only the symbols in current scope are bound brOpen, ## open wrt overloaded symbols, but may be a single ## symbol if not ambiguous (the rules match that of ## binding in generics) brForceOpen ## same as brOpen, but it will always be open even ## if not ambiguous (this cannot be achieved with ## any other means in the language currently)
- specifies how
bindSym
behaves Source Edit LineInfo = object filename*: string line*, column*: int
- Source Edit
Consts
nnkLiterals = {nnkCharLit..nnkNilLit}
- Source Edit
nnkCallKinds = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit}
- Source Edit
RoutineNodes = {nnkProcDef, nnkFuncDef, nnkMethodDef, nnkDo, nnkLambda, nnkIteratorDef, nnkTemplateDef, nnkConverterDef, nnkMacroDef}
- Source Edit
AtomicNodes = {nnkNone..nnkNilLit}
- Source Edit
CallNodes = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit, nnkHiddenCallConv}
- Source Edit
Procs
proc toNimIdent(s: string): NimIdent {...}{.magic: "StrToIdent", noSideEffect, deprecated: "Deprecated since version 0.18.0: Use \'ident\' or \'newIdentNode\' instead.".}
-
s
. Source Edit Constructs an identifier from the string proc `==`(a, b: NimIdent): bool {...}{.magic: "EqIdent", noSideEffect, deprecated: "Deprecated since version 0.18.1; Use \'==\' on \'NimNode\' instead.".}
- Source Edit Compares two Nim identifiers.
proc `==`(a, b: NimNode): bool {...}{.magic: "EqNimrodNode", noSideEffect.}
- Compare two Nim nodes. Return true if nodes are structurally equivalent. This means two independently created nodes can be equal. Source Edit
proc `==`(a, b: NimSym): bool {...}{.magic: "EqNimrodNode", noSideEffect, deprecated: "Deprecated since version 0.18.1; Use \'==(NimNode, NimNode)\' instead.".}
- Source Edit Compares two Nim symbols.
proc sameType(a, b: NimNode): bool {...}{.magic: "SameNodeType", noSideEffect, raises: [], tags: [].}
- Compares two Nim nodes' types. Return true if the types are the same, e.g. true when comparing alias with original type. Source Edit
proc len(n: NimNode): int {...}{.magic: "NLen", noSideEffect.}
- Returns the number of children of
n
. Source Edit proc `[]`(n: NimNode; i: int): NimNode {...}{.magic: "NChild", noSideEffect.}
- Get
n
'si
'th child. Source Edit proc `[]`(n: NimNode; i: BackwardsIndex): NimNode {...}{.raises: [], tags: [].}
- Get
n
'si
'th child. Source Edit proc `[]`[T, U](n: NimNode; x: HSlice[T, U]): seq[NimNode]
- Slice operation for NimNode. Returns a seq of child of
n
who inclusive range [n[x.a], n[x.b]]. Source Edit proc `[]=`(n: NimNode; i: int; child: NimNode) {...}{.magic: "NSetChild", noSideEffect.}
- Set
n
'si
'th child tochild
. Source Edit proc `[]=`(n: NimNode; i: BackwardsIndex; child: NimNode) {...}{.raises: [], tags: [].}
- Set
n
'si
'th child tochild
. Source Edit proc add(father, child: NimNode): NimNode {...}{.magic: "NAdd", discardable, noSideEffect, locks: 0.}
- Adds the
child
to thefather
node. Returns the father node so that calls can be nested. Source Edit proc add(father: NimNode; children: varargs[NimNode]): NimNode {...}{. magic: "NAddMultiple", discardable, noSideEffect, locks: 0.}
- Adds each child of
children
to thefather
node. Returns thefather
node so that calls can be nested. Source Edit proc del(father: NimNode; idx = 0; n = 1) {...}{.magic: "NDel", noSideEffect.}
- Deletes
n
children offather
starting at indexidx
. Source Edit proc kind(n: NimNode): NimNodeKind {...}{.magic: "NKind", noSideEffect.}
- Returns the
kind
of the noden
. Source Edit proc intVal(n: NimNode): BiggestInt {...}{.magic: "NIntVal", noSideEffect.}
- Returns an integer value from any integer literal or enum field symbol. Source Edit
proc floatVal(n: NimNode): BiggestFloat {...}{.magic: "NFloatVal", noSideEffect.}
- Returns a float from any floating point literal. Source Edit
proc ident(n: NimNode): NimIdent {...}{.magic: "NIdent", noSideEffect, deprecated: "Deprecated since version 0.18.1; All functionality is defined on \'NimNode\'.".}
- Source Edit
proc symbol(n: NimNode): NimSym {...}{.magic: "NSymbol", noSideEffect, deprecated: "Deprecated since version 0.18.1; All functionality is defined on \'NimNode\'.".}
- Source Edit
proc getImpl(s: NimSym): NimNode {...}{.magic: "GetImpl", noSideEffect, deprecated: "use `getImpl: NimNode -> NimNode` instead".}
- Source Edit
proc symKind(symbol: NimNode): NimSymKind {...}{.magic: "NSymKind", noSideEffect.}
- Source Edit
proc getImpl(symbol: NimNode): NimNode {...}{.magic: "GetImpl", noSideEffect.}
- Returns a copy of the declaration of a symbol or
nil
. Source Edit proc strVal(n: NimNode): string {...}{.magic: "NStrVal", noSideEffect.}
-
Returns the string value of an identifier, symbol, comment, or string literal.
See also:
- strVal= proc for setting the string value.
proc `$`(i: NimIdent): string {...}{.magic: "NStrVal", noSideEffect, deprecated: "Deprecated since version 0.18.1; Use \'strVal\' instead.".}
- Source Edit Converts a Nim identifier to a string.
proc `$`(s: NimSym): string {...}{.magic: "NStrVal", noSideEffect, deprecated: "Deprecated since version 0.18.1; Use \'strVal\' instead.".}
- Source Edit Converts a Nim symbol to a string.
proc getImplTransformed(symbol: NimNode): NimNode {...}{.magic: "GetImplTransf", noSideEffect.}
- For a typed proc returns the AST after transformation pass; this is useful for debugging how the compiler transforms code (e.g.:
defer
,for
) but note that code transformations are implementation dependent and subject to change. See an example intests/macros/tmacros_various.nim
. Source Edit proc owner(sym: NimNode): NimNode {...}{.magic: "SymOwner", noSideEffect.}
-
Accepts a node of kind
nnkSym
and returns its owner's symbol. The meaning of 'owner' depends onsym
'sNimSymKind
and declaration context. For top level declarations this is annskModule
symbol, for proc local variables annskProc
symbol, for enum/object fields annskType
symbol, etc. For symbols without an owner,nil
is returned.See also:
- symKind proc to get the kind of a symbol
- getImpl proc to get the declaration of a symbol
proc isInstantiationOf(instanceProcSym, genProcSym: NimNode): bool {...}{. magic: "SymIsInstantiationOf", noSideEffect.}
- Checks if a proc symbol is an instance of the generic proc symbol. Useful to check proc symbols against generic symbols returned by
bindSym
. Source Edit proc getType(n: NimNode): NimNode {...}{.magic: "NGetType", noSideEffect.}
- With 'getType' you can access the node's type. A Nim type is mapped to a Nim AST too, so it's slightly confusing but it means the same API can be used to traverse types. Recursive types are flattened for you so there is no danger of infinite recursions during traversal. To resolve recursive types, you have to call 'getType' again. To see what kind of type it is, call
typeKind
on getType's result. Source Edit proc getType(n: typedesc): NimNode {...}{.magic: "NGetType", noSideEffect.}
- Version of
getType
which takes atypedesc
. Source Edit proc typeKind(n: NimNode): NimTypeKind {...}{.magic: "NGetType", noSideEffect.}
- Returns the type kind of the node 'n' that should represent a type, that means the node should have been obtained via
getType
. Source Edit proc getTypeInst(n: NimNode): NimNode {...}{.magic: "NGetType", noSideEffect, raises: [], tags: [].}
- Returns the type of a node in a form matching the way the type instance was declared in the code.
Example:
type Vec[N: static[int], T] = object arr: array[N, T] Vec4[T] = Vec[4, T] Vec4f = Vec4[float32] var a: Vec4f var b: Vec4[float32] var c: Vec[4, float32] macro dumpTypeInst(x: typed): untyped = newLit(x.getTypeInst.repr) doAssert(dumpTypeInst(a) == "Vec4f") doAssert(dumpTypeInst(b) == "Vec4[float32]") doAssert(dumpTypeInst(c) == "Vec[4, float32]")
Source Edit proc getTypeInst(n: typedesc): NimNode {...}{.magic: "NGetType", noSideEffect.}
- Version of
getTypeInst
which takes atypedesc
. Source Edit proc getTypeImpl(n: NimNode): NimNode {...}{.magic: "NGetType", noSideEffect, raises: [], tags: [].}
- Returns the type of a node in a form matching the implementation of the type. Any intermediate aliases are expanded to arrive at the final type implementation. You can instead use
getImpl
on a symbol if you want to find the intermediate aliases.Example:
type Vec[N: static[int], T] = object arr: array[N, T] Vec4[T] = Vec[4, T] Vec4f = Vec4[float32] var a: Vec4f var b: Vec4[float32] var c: Vec[4, float32] macro dumpTypeImpl(x: typed): untyped = newLit(x.getTypeImpl.repr) let t = """ object arr: array[0 .. 3, float32] """ doAssert(dumpTypeImpl(a) == t) doAssert(dumpTypeImpl(b) == t) doAssert(dumpTypeImpl(c) == t)
Source Edit proc signatureHash(n: NimNode): string {...}{.magic: "NSigHash", noSideEffect.}
- Returns a stable identifier derived from the signature of a symbol. The signature combines many factors such as the type of the symbol, the owning module of the symbol and others. The same identifier is used in the back-end to produce the mangled symbol name. Source Edit
proc symBodyHash(s: NimNode): string {...}{.noSideEffect, raises: [], tags: [].}
- Returns a stable digest for symbols derived not only from type signature and owning module, but also implementation body. All procs/variables used in the implementation of this symbol are hashed recursively as well, including magics from system module. Source Edit
proc getTypeImpl(n: typedesc): NimNode {...}{.magic: "NGetType", noSideEffect.}
- Version of
getTypeImpl
which takes atypedesc
. Source Edit proc intVal=(n: NimNode; val: BiggestInt) {...}{.magic: "NSetIntVal", noSideEffect.}
- Source Edit
proc floatVal=(n: NimNode; val: BiggestFloat) {...}{.magic: "NSetFloatVal", noSideEffect.}
- Source Edit
proc symbol=(n: NimNode; val: NimSym) {...}{.magic: "NSetSymbol", noSideEffect, deprecated: "Deprecated since version 0.18.1; Generate a new \'NimNode\' with \'genSym\' instead.".}
- Source Edit
proc ident=(n: NimNode; val: NimIdent) {...}{.magic: "NSetIdent", noSideEffect, deprecated: "Deprecated since version 0.18.1; Generate a new \'NimNode\' with \'ident(string)\' instead.".}
- Source Edit
proc strVal=(n: NimNode; val: string) {...}{.magic: "NSetStrVal", noSideEffect.}
-
Sets the string value of a string literal or comment. Setting
strVal
is disallowed fornnkIdent
andnnkSym
nodes; a new node must be created usingident
orbindSym
instead.See also:
- strVal proc for getting the string value.
- ident proc for creating an identifier.
- bindSym proc for binding a symbol.
proc newNimNode(kind: NimNodeKind; lineInfoFrom: NimNode = nil): NimNode {...}{. magic: "NNewNimNode", noSideEffect.}
-
Creates a new AST node of the specified kind.
The
Source EditlineInfoFrom
parameter is used for line information when the produced code crashes. You should ensure that it is set to a node that you are transforming. proc copyNimNode(n: NimNode): NimNode {...}{.magic: "NCopyNimNode", noSideEffect.}
- Source Edit
proc copyNimTree(n: NimNode): NimNode {...}{.magic: "NCopyNimTree", noSideEffect.}
- Source Edit
proc error(msg: string; n: NimNode = nil) {...}{.magic: "NError", gcsafe, locks: 0.}
- Writes an error message at compile time. The optional
n: NimNode
parameter is used as the source for file and line number information in the compilation error message. Source Edit proc warning(msg: string; n: NimNode = nil) {...}{.magic: "NWarning", gcsafe, locks: 0.}
- Writes a warning message at compile time. Source Edit
proc hint(msg: string; n: NimNode = nil) {...}{.magic: "NHint", gcsafe, locks: 0.}
- Writes a hint message at compile time. Source Edit
proc newStrLitNode(s: string): NimNode {...}{.compileTime, noSideEffect, raises: [], tags: [].}
- Creates a string literal node from
s
. Source Edit proc newCommentStmtNode(s: string): NimNode {...}{.compileTime, noSideEffect, raises: [], tags: [].}
- Creates a comment statement node. Source Edit
proc newIntLitNode(i: BiggestInt): NimNode {...}{.compileTime, raises: [], tags: [].}
- Creates an int literal node from
i
. Source Edit proc newFloatLitNode(f: BiggestFloat): NimNode {...}{.compileTime, raises: [], tags: [].}
- Creates a float literal node from
f
. Source Edit proc newIdentNode(i: NimIdent): NimNode {...}{.compileTime, deprecated, raises: [], tags: [].}
-
i
. Source Edit Creates an identifier node from proc newIdentNode(i: string): NimNode {...}{.magic: "StrToIdent", noSideEffect.}
- Creates an identifier node from
i
. It is simply an alias forident(string)
. Use that, it's shorter. Source Edit proc ident(name: string): NimNode {...}{.magic: "StrToIdent", noSideEffect.}
- Create a new ident node from a string. Source Edit
proc bindSym(ident: string | NimNode; rule: BindSymRule = brClosed): NimNode {...}{. magic: "NBindSym", noSideEffect.}
-
Creates a node that binds
ident
to a symbol node. The bound symbol may be an overloaded symbol. ifident
is a NimNode, it must havennkIdent
kind. Ifrule == brClosed
either annnkClosedSymChoice
tree is returned ornnkSym
if the symbol is not ambiguous. Ifrule == brOpen
either annnkOpenSymChoice
tree is returned ornnkSym
if the symbol is not ambiguous. Ifrule == brForceOpen
always annnkOpenSymChoice
tree is returned even if the symbol is not ambiguous.Experimental feature: use {.experimental: "dynamicBindSym".} to activate it. If called from template / regular code,
Source Editident
andrule
must be constant expression / literal value. If called from macros / compile time procs / static blocks,ident
andrule
can be VM computed value. proc genSym(kind: NimSymKind = nskLet; ident = ""): NimNode {...}{.magic: "NGenSym", noSideEffect.}
- Generates a fresh symbol that is guaranteed to be unique. The symbol needs to occur in a declaration context. Source Edit
proc callsite(): NimNode {...}{.magic: "NCallSite", gcsafe, locks: 0, deprecated: "Deprecated since v0.18.1; use varargs[untyped] in the macro prototype instead".}
- Source Edit Returns the AST of the invocation expression that invoked this macro.
proc toStrLit(n: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Converts the AST
n
to the concrete Nim code and wraps that in a string literal node. Source Edit proc `$`(arg: LineInfo): string {...}{.raises: [], tags: [].}
- Return a string representation in the form
filepath(line, column)
. Source Edit proc copyLineInfo(arg: NimNode; info: NimNode) {...}{.magic: "NLineInfo", noSideEffect.}
- Copy lineinfo from
info
. Source Edit proc lineInfoObj(n: NimNode): LineInfo {...}{.compileTime, raises: [], tags: [].}
- Returns
LineInfo
ofn
, using absolute path forfilename
. Source Edit proc lineInfo(arg: NimNode): string {...}{.compileTime, raises: [], tags: [].}
- Return line info in the form
filepath(line, column)
. Source Edit proc internalErrorFlag(): string {...}{.magic: "NError", noSideEffect.}
- Some builtins set an error flag. This is then turned into a proper exception. Note: Ordinary application code should not call this. Source Edit
proc parseExpr(s: string): NimNode {...}{.noSideEffect, compileTime, raises: [ValueError], tags: [].}
- Compiles the passed string to its AST representation. Expects a single expression. Raises
ValueError
for parsing errors. Source Edit proc parseStmt(s: string): NimNode {...}{.noSideEffect, compileTime, raises: [ValueError], tags: [].}
- Compiles the passed string to its AST representation. Expects one or more statements. Raises
ValueError
for parsing errors. Source Edit proc getAst(macroOrTemplate: untyped): NimNode {...}{.magic: "ExpandToAst", noSideEffect.}
- Obtains the AST nodes returned from a macro or template invocation. Example:
macro FooMacro() = var ast = getAst(BarTemplate())
Source Edit proc quote(bl: typed; op = "``"): NimNode {...}{.magic: "QuoteAst", noSideEffect.}
-
Quasi-quoting operator. Accepts an expression or a block and returns the AST that represents it. Within the quoted AST, you are able to interpolate NimNode expressions from the surrounding scope. If no operator is given, quoting is done using backticks. Otherwise, the given operator must be used as a prefix operator for any interpolated expression.
Example:
macro check(ex: untyped) = # this is a simplified version of the check macro from the # unittest module. # If there is a failed check, we want to make it easy for # the user to jump to the faulty line in the code, so we # get the line info here: var info = ex.lineinfo # We will also display the code string of the failed check: var expString = ex.toStrLit # Finally we compose the code to implement the check: result = quote do: if not `ex`: echo `info` & ": Check failed: " & `expString`
Source Edit proc expectKind(n: NimNode; k: NimNodeKind) {...}{.compileTime, raises: [], tags: [].}
- Checks that
n
is of kindk
. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check the AST that is passed to them. Source Edit proc expectMinLen(n: NimNode; min: int) {...}{.compileTime, raises: [], tags: [].}
- Checks that
n
has at leastmin
children. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check its number of arguments. Source Edit proc expectLen(n: NimNode; len: int) {...}{.compileTime, raises: [], tags: [].}
- Checks that
n
has exactlylen
children. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check its number of arguments. Source Edit proc expectLen(n: NimNode; min, max: int) {...}{.compileTime, raises: [], tags: [].}
- Checks that
n
has a number of children in the rangemin..max
. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check its number of arguments. Source Edit proc newTree(kind: NimNodeKind; children: varargs[NimNode]): NimNode {...}{. compileTime, raises: [], tags: [].}
- Produces a new node with children. Source Edit
proc newCall(theProc: NimNode; args: varargs[NimNode]): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new call node.
theProc
is the proc that is called with the argumentsargs[0..]
. Source Edit proc newCall(theProc: NimIdent; args: varargs[NimNode]): NimNode {...}{.compileTime, deprecated: "Deprecated since v0.18.1; use \'newCall(string, ...)\' or \'newCall(NimNode, ...)\' instead", raises: [], tags: [].}
-
theProc
is the proc that is called with the argumentsargs[0..]
. Source Edit Produces a new call node. proc newCall(theProc: string; args: varargs[NimNode]): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new call node.
theProc
is the proc that is called with the argumentsargs[0..]
. Source Edit proc newLit(c: char): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new character literal node. Source Edit
proc newLit(i: int): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new integer literal node. Source Edit
proc newLit(i: int8): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new integer literal node. Source Edit
proc newLit(i: int16): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new integer literal node. Source Edit
proc newLit(i: int32): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new integer literal node. Source Edit
proc newLit(i: int64): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new integer literal node. Source Edit
proc newLit(i: uint): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new unsigned integer literal node. Source Edit
proc newLit(i: uint8): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new unsigned integer literal node. Source Edit
proc newLit(i: uint16): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new unsigned integer literal node. Source Edit
proc newLit(i: uint32): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new unsigned integer literal node. Source Edit
proc newLit(i: uint64): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new unsigned integer literal node. Source Edit
proc newLit(b: bool): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new boolean literal node. Source Edit
proc newLit(s: string): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new string literal node. Source Edit
proc newLit(f: float32): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new float literal node. Source Edit
proc newLit(f: float64): NimNode {...}{.compileTime, raises: [], tags: [].}
- Produces a new float literal node. Source Edit
proc newLit(arg: enum): NimNode {...}{.compileTime.}
- Source Edit
proc newLit(arg: object): NimNode {...}{.compileTime.}
- Source Edit
proc newLit(arg: ref object): NimNode {...}{.compileTime.}
- produces a new ref type literal node. Source Edit
proc newLit[N, T](arg: array[N, T]): NimNode {...}{.compileTime.}
- Source Edit
proc newLit[T](arg: seq[T]): NimNode {...}{.compileTime.}
- Source Edit
proc newLit[T](s: set[T]): NimNode {...}{.compileTime.}
- Source Edit
proc newLit[T: tuple](arg: T): NimNode {...}{.compileTime.}
- use -d:nimHasWorkaround14720 to restore behavior prior to PR, forcing a named tuple even when
arg
is unnamed. Source Edit proc nestList(op: NimNode; pack: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Nests the list
pack
into a tree of call expressions:[a, b, c]
is transformed intoop(a, op(c, d))
. This is also known as fold expression. Source Edit proc nestList(op: NimNode; pack: NimNode; init: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Nests the list
pack
into a tree of call expressions:[a, b, c]
is transformed intoop(a, op(c, d))
. This is also known as fold expression. Source Edit proc treeRepr(n: NimNode): string {...}{.compileTime, gcsafe, locks: 0, raises: [], tags: [].}
-
Convert the AST
n
to a human-readable tree-like string.See also
Source Editrepr
,lispRepr
, andastGenRepr
. proc lispRepr(n: NimNode; indented = false): string {...}{.compileTime, gcsafe, locks: 0, raises: [], tags: [].}
-
Convert the AST
n
to a human-readable lisp-like string.See also
Source Editrepr
,treeRepr
, andastGenRepr
. proc astGenRepr(n: NimNode): string {...}{.compileTime, gcsafe, locks: 0, raises: [], tags: [].}
-
Convert the AST
n
to the code required to generate that AST.See also
Source Editrepr
,treeRepr
, andlispRepr
. proc newEmptyNode(): NimNode {...}{.compileTime, noSideEffect, raises: [], tags: [].}
- Create a new empty node. Source Edit
proc newStmtList(stmts: varargs[NimNode]): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new statement list. Source Edit
proc newPar(exprs: varargs[NimNode]): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new parentheses-enclosed expression. Source Edit
proc newBlockStmt(label, body: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new block statement with label. Source Edit
proc newBlockStmt(body: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new block: stmt. Source Edit
proc newVarStmt(name, value: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new var stmt. Source Edit
proc newLetStmt(name, value: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new let stmt. Source Edit
proc newConstStmt(name, value: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create a new const stmt. Source Edit
proc newAssignment(lhs, rhs: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc newDotExpr(a, b: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create new dot expression. a.dot(b) ->
a.b
Source Edit proc newColonExpr(a, b: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Create new colon expression. newColonExpr(a, b) ->
a: b
Source Edit proc newIdentDefs(name, kind: NimNode; default = newEmptyNode()): NimNode {...}{. compileTime, raises: [], tags: [].}
-
Creates a new
nnkIdentDefs
node of a specific kind and value.nnkIdentDefs
need to have at least three children, but they can have more: first comes a list of identifiers followed by a type and value nodes. This helper proc creates a three node subtree, the first subnode being a single identifier name. Both thekind
node anddefault
(value) nodes may be empty depending on where thennkIdentDefs
appears: tuple or object definitions will have an emptydefault
node,let
orvar
blocks may have an emptykind
node if the identifier is being assigned a value. Example:var varSection = newNimNode(nnkVarSection).add( newIdentDefs(ident("a"), ident("string")), newIdentDefs(ident("b"), newEmptyNode(), newLit(3))) # --> var # a: string # b = 3
If you need to create multiple identifiers you need to use the lower level
newNimNode
:result = newNimNode(nnkIdentDefs).add( ident("a"), ident("b"), ident("c"), ident("string"), newStrLitNode("Hello"))
Source Edit proc newNilLit(): NimNode {...}{.compileTime, raises: [], tags: [].}
- New nil literal shortcut. Source Edit
proc last(node: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Return the last item in nodes children. Same as
node[^1]
. Source Edit proc expectKind(n: NimNode; k: set[NimNodeKind]) {...}{.compileTime, raises: [], tags: [].}
- Checks that
n
is of kindk
. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check the AST that is passed to them. Source Edit proc newProc(name = newEmptyNode(); params: openArray[NimNode] = [newEmptyNode()]; body: NimNode = newStmtList(); procType = nnkProcDef; pragmas: NimNode = newEmptyNode()): NimNode {...}{.compileTime, raises: [], tags: [].}
-
Shortcut for creating a new proc.
The
Source Editparams
array must start with the return type of the proc, followed by a list of IdentDefs which specify the params. proc newIfStmt(branches: varargs[tuple[cond, body: NimNode]]): NimNode {...}{. compileTime, raises: [], tags: [].}
- Constructor for
if
statements.newIfStmt( (Ident, StmtList), ... )
Source Edit proc newEnum(name: NimNode; fields: openArray[NimNode]; public, pure: bool): NimNode {...}{. compileTime, raises: [], tags: [].}
- Creates a new enum.
name
must be an ident. Fields are allowed to be either idents or EnumFieldDefnewEnum( name = ident("Colors"), fields = [ident("Blue"), ident("Red")], public = true, pure = false) # type Colors* = Blue Red
Source Edit proc copyChildrenTo(src, dest: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Copy all children from
src
todest
. Source Edit proc name(someProc: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc name=(someProc: NimNode; val: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc params(someProc: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc params=(someProc: NimNode; params: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc pragma(someProc: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Get the pragma of a proc type. These will be expanded. Source Edit
proc pragma=(someProc: NimNode; val: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Set the pragma of a proc type. Source Edit
proc addPragma(someProc, pragma: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Adds pragma to routine definition. Source Edit
proc body(someProc: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc body=(someProc: NimNode; val: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc basename(a: NimNode): NimNode {...}{.raises: [], tags: [].}
- Pull an identifier from prefix/postfix expressions. Source Edit
proc `$`(node: NimNode): string {...}{.compileTime, raises: [], tags: [].}
- Get the string of an identifier node. Source Edit
proc insert(a: NimNode; pos: int; b: NimNode) {...}{.compileTime, raises: [], tags: [].}
- Insert node
b
into nodea
atpos
. Source Edit proc basename=(a: NimNode; val: string) {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc postfix(node: NimNode; op: string): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc prefix(node: NimNode; op: string): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc infix(a: NimNode; op: string; b: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- Source Edit
proc unpackPostfix(node: NimNode): tuple[node: NimNode, op: string] {...}{. compileTime, raises: [], tags: [].}
- Source Edit
proc unpackPrefix(node: NimNode): tuple[node: NimNode, op: string] {...}{. compileTime, raises: [], tags: [].}
- Source Edit
proc unpackInfix(node: NimNode): tuple[left: NimNode, op: string, right: NimNode] {...}{. compileTime, raises: [], tags: [].}
- Source Edit
proc copy(node: NimNode): NimNode {...}{.compileTime, raises: [], tags: [].}
- An alias for copyNimTree. Source Edit
proc eqIdent(a: string; b: string): bool {...}{.magic: "EqIdent", noSideEffect.}
- Style insensitive comparison. Source Edit
proc eqIdent(a: NimNode; b: string): bool {...}{.magic: "EqIdent", noSideEffect.}
- Style insensitive comparison.
a
can be an identifier or a symbol.a
may be wrapped in an export marker (nnkPostfix
) or quoted with backticks (nnkAccQuoted
), these nodes will be unwrapped. Source Edit proc eqIdent(a: string; b: NimNode): bool {...}{.magic: "EqIdent", noSideEffect.}
- Style insensitive comparison.
b
can be an identifier or a symbol.b
may be wrapped in an export marker (nnkPostfix
) or quoted with backticks (nnkAccQuoted
), these nodes will be unwrapped. Source Edit proc eqIdent(a: NimNode; b: NimNode): bool {...}{.magic: "EqIdent", noSideEffect.}
- Style insensitive comparison.
a
andb
can be an identifier or a symbol. Both may be wrapped in an export marker (nnkPostfix
) or quoted with backticks (nnkAccQuoted
), these nodes will be unwrapped. Source Edit proc expectIdent(n: NimNode; name: string) {...}{.compileTime, raises: [], tags: [].}
- Check that
eqIdent(n,name)
holds true. If this is not the case, compilation aborts with an error message. This is useful for writing macros that check the AST that is passed to them. Source Edit proc hasArgOfName(params: NimNode; name: string): bool {...}{.compileTime, raises: [], tags: [].}
- Search
nnkFormalParams
for an argument. Source Edit proc addIdentIfAbsent(dest: NimNode; ident: string) {...}{.compileTime, raises: [], tags: [].}
- Add
ident
todest
if it is not present. This is intended for use with pragmas. Source Edit proc boolVal(n: NimNode): bool {...}{.compileTime, noSideEffect, raises: [], tags: [].}
- Source Edit
proc nodeID(n: NimNode): int {...}{.magic: "NodeId".}
- Returns the id of
n
, when the compiler has been compiled with the flag-d:useNodeids
, otherwise returns-1
. This proc is for the purpose to debug the compiler only. Source Edit proc getProjectPath(): string {...}{.raises: [], tags: [].}
-
Returns the path to the currently compiling project.
This is not to be confused with system.currentSourcePath which returns the path of the source file containing that template call.
For example, assume a
dir1/foo.nim
that imports adir2/bar.nim
, have thebar.nim
print out bothgetProjectPath
andcurrentSourcePath
outputs.Now when
foo.nim
is compiled, thegetProjectPath
frombar.nim
will return thedir1/
path, while thecurrentSourcePath
will return the path to thebar.nim
source file.Now when
bar.nim
is compiled directly, thegetProjectPath
will now return thedir2/
path, and thecurrentSourcePath
will still return the same path, the path to thebar.nim
source file.The path returned by this proc is set at compile time.
See also:
Source Edit proc getSize(arg: NimNode): int {...}{.magic: "NSizeOf", noSideEffect, raises: [], tags: [].}
- Returns the same result as
system.sizeof
if the size is known by the Nim compiler. Returns a negative value if the Nim compiler does not know the size. Source Edit proc getAlign(arg: NimNode): int {...}{.magic: "NSizeOf", noSideEffect, raises: [], tags: [].}
- Returns the same result as
system.alignof
if the alignment is known by the Nim compiler. It works onNimNode
for use in macro context. Returns a negative value if the Nim compiler does not know the alignment. Source Edit proc getOffset(arg: NimNode): int {...}{.magic: "NSizeOf", noSideEffect, raises: [], tags: [].}
- Returns the same result as
system.offsetof
if the offset is known by the Nim compiler. It expects a resolved symbol node from a field of a type. Therefore it only requires one argument instead of two. Returns a negative value if the Nim compiler does not know the offset. Source Edit proc isExported(n: NimNode): bool {...}{.noSideEffect, raises: [], tags: [].}
- Returns whether the symbol is exported or not. Source Edit
proc extractDocCommentsAndRunnables(n: NimNode): NimNode {...}{.raises: [], tags: [].}
- returns a
nnkStmtList
containing the top-level doc comments and runnableExamples ina
, stopping at the first child that is neither. Example:import macros macro transf(a): untyped = result = quote do: proc fun2*() = discard let header = extractDocCommentsAndRunnables(a.body) # correct usage: rest is appended result.body = header result.body.add quote do: discard # just an example # incorrect usage: nesting inside a nnkStmtList: # result.body = quote do: (`header`; discard) proc fun*() {.transf.} = ## first comment runnableExamples: discard runnableExamples: discard ## last comment discard # first statement after doc comments + runnableExamples ## not docgen'd
Source Edit
Iterators
iterator items(n: NimNode): NimNode {...}{.inline, raises: [], tags: [].}
- Iterates over the children of the NimNode
n
. Source Edit iterator pairs(n: NimNode): (int, NimNode) {...}{.inline, raises: [], tags: [].}
- Iterates over the children of the NimNode
n
and its indices. Source Edit iterator children(n: NimNode): NimNode {...}{.inline, raises: [], tags: [].}
- Iterates over the children of the NimNode
n
. Source Edit
Macros
macro dumpTree(s: untyped): untyped
-
Accepts a block of nim code and prints the parsed abstract syntax tree using the
treeRepr
proc. Printing is done at compile time.You can use this as a tool to explore the Nim's abstract syntax tree and to discover what kind of nodes must be created to represent a certain expression/statement.
For example:
dumpTree: echo "Hello, World!"
Outputs:
StmtList Command Ident "echo" StrLit "Hello, World!"
Also see
Source EditdumpAstGen
anddumpLisp
. macro dumpLisp(s: untyped): untyped
-
Accepts a block of nim code and prints the parsed abstract syntax tree using the
lispRepr
proc. Printing is done at compile time.You can use this as a tool to explore the Nim's abstract syntax tree and to discover what kind of nodes must be created to represent a certain expression/statement.
For example:
dumpLisp: echo "Hello, World!"
Outputs:
(StmtList (Command (Ident "echo") (StrLit "Hello, World!")))
Also see
Source EditdumpAstGen
anddumpTree
. macro dumpAstGen(s: untyped): untyped
-
Accepts a block of nim code and prints the parsed abstract syntax tree using the
astGenRepr
proc. Printing is done at compile time.You can use this as a tool to write macros quicker by writing example outputs and then copying the snippets into the macro for modification.
For example:
dumpAstGen: echo "Hello, World!"
Outputs:
nnkStmtList.newTree( nnkCommand.newTree( newIdentNode("echo"), newLit("Hello, World!") ) )
Also see
Source EditdumpTree
anddumpLisp
. macro expandMacros(body: typed): untyped
-
Expands one level of macro - useful for debugging. Can be used to inspect what happens when a macro call is expanded, without altering its result.
For instance,
import sugar, macros let x = 10 y = 20 expandMacros: dump(x + y)
will actually dump
Source Editx + y
, but at the same time will print at compile time the expansion of thedump
macro, which in this case isdebugEcho ["x + y", " = ", x + y]
. macro hasCustomPragma(n: typed; cp: typed{nkSym}): untyped
-
Expands to
true
if expressionn
which is expected to bennkDotExpr
(if checking a field), a proc or a type has custom pragmacp
.See also
getCustomPragmaVal
.template myAttr() {.pragma.} type MyObj = object myField {.myAttr.}: int proc myProc() {.myAttr.} = discard var o: MyObj assert(o.myField.hasCustomPragma(myAttr)) assert(myProc.hasCustomPragma(myAttr))
Source Edit macro getCustomPragmaVal(n: typed; cp: typed{nkSym}): untyped
-
Expands to value of custom pragma
cp
of expressionn
which is expected to bennkDotExpr
, a proc or a type.See also
hasCustomPragma
template serializationKey(key: string) {.pragma.} type MyObj {.serializationKey: "mo".} = object myField {.serializationKey: "mf".}: int var o: MyObj assert(o.myField.getCustomPragmaVal(serializationKey) == "mf") assert(o.getCustomPragmaVal(serializationKey) == "mo") assert(MyObj.getCustomPragmaVal(serializationKey) == "mo")
Source Edit macro unpackVarargs(callee: untyped; args: varargs[untyped]): untyped
- Source Edit
Templates
template `or`(x, y: NimNode): NimNode
- Evaluate
x
and when it is not an empty node, return it. Otherwise evaluate toy
. Can be used to chain several expressions to get the first expression that is not empty.let node = mightBeEmpty() or mightAlsoBeEmpty() or fallbackNode
Source Edit template findChild(n: NimNode; cond: untyped): NimNode {...}{.dirty.}
- Find the first child node matching condition (or nil).
var res = findChild(n, it.kind == nnkPostfix and it.basename.ident == toNimIdent"foo")
Source Edit
© 2006–2021 Andreas Rumpf
Licensed under the MIT License.
https://nim-lang.org/docs/macros.html