Numbers
Standard Numeric Types
Abstract number types
Core.NumberType
Number
Abstract supertype for all number types.
source
Core.RealType
Real <: Number
Abstract supertype for all real numbers.
source
Core.AbstractFloatType
AbstractFloat <: Real
Abstract supertype for all floating point numbers.
source
Core.IntegerType
Integer <: Real
Abstract supertype for all integers.
source
Core.SignedType
Signed <: Integer
Abstract supertype for all signed integers.
source
Core.UnsignedType
Unsigned <: Integer
Abstract supertype for all unsigned integers.
sourceConcrete number types
Core.Float16Type
Float16 <: AbstractFloat
16-bit floating point number type.
source
Core.Float32Type
Float32 <: AbstractFloat
32-bit floating point number type.
source
Core.Float64Type
Float64 <: AbstractFloat
64-bit floating point number type.
source
Base.MPFR.BigFloatType
BigFloat <: AbstractFloat
Arbitrary precision floating point number type.
source
Core.BoolType
Bool <: Integer
Boolean type.
source
Core.Int8Type
Int8 <: Signed
8-bit signed integer type.
source
Core.UInt8Type
UInt8 <: Unsigned
8-bit unsigned integer type.
source
Core.Int16Type
Int16 <: Signed
16-bit signed integer type.
source
Core.UInt16Type
UInt16 <: Unsigned
16-bit unsigned integer type.
source
Core.Int32Type
Int32 <: Signed
32-bit signed integer type.
source
Core.UInt32Type
UInt32 <: Unsigned
32-bit unsigned integer type.
source
Core.Int64Type
Int64 <: Signed
64-bit signed integer type.
source
Core.UInt64Type
UInt64 <: Unsigned
64-bit unsigned integer type.
source
Core.Int128Type
Int128 <: Signed
128-bit signed integer type.
source
Core.UInt128Type
UInt128 <: Unsigned
128-bit unsigned integer type.
source
Base.GMP.BigIntType
BigInt <: Integer
Arbitrary precision integer type.
source
Base.ComplexType
Complex{T<:Real} <: Number
Complex number type with real and imaginary part of type T.
Complex32, Complex64 and Complex128 are aliases for Complex{Float16}, Complex{Float32} and Complex{Float64} respectively.
Base.RationalType
Rational{T<:Integer} <: Real
Rational number type, with numerator and denominator of type T.
Base.IrrationalType
Irrational <: Real
Irrational number type.
sourceData Formats
Base.binFunction
bin(n, pad::Int=1)
Convert an integer to a binary string, optionally specifying a number of digits to pad to.
julia> bin(10,2) "1010" julia> bin(10,8) "00001010"source
Base.hexFunction
hex(n, pad::Int=1)
Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.
julia> hex(20) "14" julia> hex(20, 3) "014"source
Base.decFunction
dec(n, pad::Int=1)
Convert an integer to a decimal string, optionally specifying a number of digits to pad to.
Examples
julia> dec(20) "20" julia> dec(20, 3) "020"source
Base.octFunction
oct(n, pad::Int=1)
Convert an integer to an octal string, optionally specifying a number of digits to pad to.
julia> oct(20) "24" julia> oct(20, 3) "024"source
Base.baseFunction
base(base::Integer, n::Integer, pad::Integer=1)
Convert an integer n to a string in the given base, optionally specifying a number of digits to pad to.
julia> base(13,5,4) "0005" julia> base(5,13,4) "0023"source
Base.digitsFunction
digits([T<:Integer], n::Integer, base::T=10, pad::Integer=1)
Returns an array with element type T (default Int) of the digits of n in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indexes, such that n == sum([digits[k]*base^(k-1) for k=1:length(digits)]).
Examples
julia> digits(10, 10)
2-element Array{Int64,1}:
0
1
julia> digits(10, 2)
4-element Array{Int64,1}:
0
1
0
1
julia> digits(10, 2, 6)
6-element Array{Int64,1}:
0
1
0
1
0
0
source
Base.digits!Function
digits!(array, n::Integer, base::Integer=10)
Fills an array of the digits of n in the given base. More significant digits are at higher indexes. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2,2,2,2], 10, 2)
4-element Array{Int64,1}:
0
1
0
1
julia> digits!([2,2,2,2,2,2], 10, 2)
6-element Array{Int64,1}:
0
1
0
1
0
0
source
Base.bitsFunction
bits(n)
A string giving the literal bit representation of a number.
Example
julia> bits(4) "0000000000000000000000000000000000000000000000000000000000000100" julia> bits(2.2) "0100000000000001100110011001100110011001100110011001100110011010"source
Base.parseMethod
parse(type, str, [base])
Parse a string as a number. If the type is an integer type, then a base can be specified (the default is 10). If the type is a floating point type, the string is parsed as a decimal floating point number. If the string does not contain a valid number, an error is raised.
julia> parse(Int, "1234") 1234 julia> parse(Int, "1234", 5) 194 julia> parse(Int, "afc", 16) 2812 julia> parse(Float64, "1.2e-3") 0.0012source
Base.tryparseFunction
tryparse(type, str, [base])
Like parse, but returns a Nullable of the requested type. The result will be null if the string does not contain a valid number.
Base.bigFunction
big(x)
Convert a number to a maximum precision representation (typically BigInt or BigFloat). See BigFloat for information about some pitfalls with floating-point numbers.
Base.signedFunction
signed(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
source
Base.unsignedFunction
unsigned(x) -> Unsigned
Convert a number to an unsigned integer. If the argument is signed, it is reinterpreted as unsigned without checking for negative values.
Examples
julia> unsigned(-2) 0xfffffffffffffffe julia> unsigned(2) 0x0000000000000002 julia> signed(unsigned(-2)) -2source
Base.floatMethod
float(x)
Convert a number or array to a floating point data type. When passed a string, this function is equivalent to parse(Float64, x).
Base.Math.significandFunction
significand(x)
Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number. If x is a non-zero finite number, then the result will be a number of the same type on the interval $[1,2)$. Otherwise x is returned.
Examples
julia> significand(15.2)/15.2 0.125 julia> significand(15.2)*8 15.2source
Base.Math.exponentFunction
exponent(x) -> Int
Get the exponent of a normalized floating-point number.
source
Base.complexMethod
complex(r, [i])
Convert real numbers or arrays to complex. i defaults to zero.
Base.bswapFunction
bswap(n)
Byte-swap an integer. Flip the bits of its binary representation.
Examples
julia> a = bswap(4) 288230376151711744 julia> bswap(a) 4 julia> bin(1) "1" julia> bin(bswap(1)) "100000000000000000000000000000000000000000000000000000000"source
Base.num2hexFunction
num2hex(f)
Get a hexadecimal string of the binary representation of a floating point number.
Example
julia> num2hex(2.2) "400199999999999a"source
Base.hex2numFunction
hex2num(str)
Convert a hexadecimal string to the floating point number it represents.
source
Base.hex2bytesFunction
hex2bytes(s::AbstractString)
Convert an arbitrarily long hexadecimal string to its binary representation. Returns an Array{UInt8,1}, i.e. an array of bytes.
julia> a = hex(12345)
"3039"
julia> hex2bytes(a)
2-element Array{UInt8,1}:
0x30
0x39
source
Base.bytes2hexFunction
bytes2hex(bin_arr::Array{UInt8, 1}) -> String
Convert an array of bytes to its hexadecimal representation. All characters are in lower-case.
julia> a = hex(12345)
"3039"
julia> b = hex2bytes(a)
2-element Array{UInt8,1}:
0x30
0x39
julia> bytes2hex(b)
"3039"
sourceGeneral Number Functions and Constants
Base.oneFunction
one(x) one(T::type)
Return a multiplicative identity for x: a value such that one(x)*x == x*one(x) == x. Alternatively one(T) can take a type T, in which case one returns a multiplicative identity for any x of type T.
If possible, one(x) returns a value of the same type as x, and one(T) returns a value of type T. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case, one(x) should return an identity value of the same precision (and shape, for matrices) as x.
If you want a quantity that is of the same type as x, or of type T, even if x is dimensionful, use oneunit instead.
julia> one(3.7) 1.0 julia> one(Int) 1 julia> one(Dates.Day(1)) 1source
Base.oneunitFunction
oneunit(x::T) oneunit(T::Type)
Returns T(one(x)), where T is either the type of the argument or (if a type is passed) the argument. This differs from one for dimensionful quantities: one is dimensionless (a multiplicative identity) while oneunit is dimensionful (of the same type as x, or of type T).
julia> oneunit(3.7) 1.0 julia> oneunit(Dates.Day) 1 daysource
Base.zeroFunction
zero(x)
Get the additive identity element for the type of x (x can also specify the type itself).
julia> zero(1)
0
julia> zero(big"2.0")
0.000000000000000000000000000000000000000000000000000000000000000000000000000000
julia> zero(rand(2,2))
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
source
Base.piConstant
pi π
The constant pi.
julia> pi π = 3.1415926535897...source
Base.imConstant
im
The imaginary unit.
source
Base.euConstant
e eu
The constant e.
julia> e e = 2.7182818284590...source
Base.catalanConstant
catalan
Catalan's constant.
julia> catalan catalan = 0.9159655941772...source
Base.eulergammaConstant
γ eulergamma
Euler's constant.
julia> eulergamma γ = 0.5772156649015...source
Base.goldenConstant
φ golden
The golden ratio.
julia> golden φ = 1.6180339887498...source
Base.InfConstant
Inf
Positive infinity of type Float64.
Base.Inf32Constant
Inf32
Positive infinity of type Float32.
Base.Inf16Constant
Inf16
Positive infinity of type Float16.
Base.NaNConstant
NaN
A not-a-number value of type Float64.
Base.NaN32Constant
NaN32
A not-a-number value of type Float32.
Base.NaN16Constant
NaN16
A not-a-number value of type Float16.
Base.issubnormalFunction
issubnormal(f) -> Bool
Test whether a floating point number is subnormal.
source
Base.isfiniteFunction
isfinite(f) -> Bool
Test whether a number is finite.
julia> isfinite(5) true julia> isfinite(NaN32) falsesource
Base.isinfFunction
isinf(f) -> Bool
Test whether a number is infinite.
source
Base.isnanFunction
isnan(f) -> Bool
Test whether a floating point number is not a number (NaN).
source
Base.iszeroFunction
iszero(x)
Return true if x == zero(x); if x is an array, this checks whether all of the elements of x are zero.
Base.nextfloatFunction
nextfloat(x::AbstractFloat, n::Integer)
The result of n iterative applications of nextfloat to x if n >= 0, or -n applications of prevfloat if n < 0.
nextfloat(x::AbstractFloat)
Returns the smallest floating point number y of the same type as x such x < y. If no such y exists (e.g. if x is Inf or NaN), then returns x.
Base.prevfloatFunction
prevfloat(x::AbstractFloat)
Returns the largest floating point number y of the same type as x such y < x. If no such y exists (e.g. if x is -Inf or NaN), then returns x.
Base.isintegerFunction
isinteger(x) -> Bool
Test whether x is numerically equal to some integer.
julia> isinteger(4.0) truesource
Base.isrealFunction
isreal(x) -> Bool
Test whether x or all its elements are numerically equal to some real number.
julia> isreal(5.) true julia> isreal([4.; complex(0,1)]) falsesource
Core.Float32Method
Float32(x [, mode::RoundingMode])
Create a Float32 from x. If x is not exactly representable then mode determines how x is rounded.
Examples
julia> Float32(1/3, RoundDown) 0.3333333f0 julia> Float32(1/3, RoundUp) 0.33333334f0
See RoundingMode for available rounding modes.
Core.Float64Method
Float64(x [, mode::RoundingMode])
Create a Float64 from x. If x is not exactly representable then mode determines how x is rounded.
Examples
julia> Float64(pi, RoundDown) 3.141592653589793 julia> Float64(pi, RoundUp) 3.1415926535897936
See RoundingMode for available rounding modes.
Base.GMP.BigIntMethod
BigInt(x)
Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int). The usual mathematical operators are defined for this type, and results are promoted to a BigInt.
Instances can be constructed from strings via parse, or using the big string literal.
julia> parse(BigInt, "42") 42 julia> big"313" 313source
Base.MPFR.BigFloatMethod
BigFloat(x)
Create an arbitrary precision floating point number. x may be an Integer, a Float64 or a BigInt. The usual mathematical operators are defined for this type, and results are promoted to a BigFloat.
Note that because decimal literals are converted to floating point numbers when parsed, BigFloat(2.1) may not yield what you expect. You may instead prefer to initialize constants from strings via parse, or using the big string literal.
julia> BigFloat(2.1) 2.100000000000000088817841970012523233890533447265625000000000000000000000000000 julia> big"2.1" 2.099999999999999999999999999999999999999999999999999999999999999999999999999986source
Base.Rounding.roundingFunction
rounding(T)
Get the current floating point rounding mode for type T, controlling the rounding of basic arithmetic functions (+, -, *, / and sqrt) and type conversion.
See RoundingMode for available modes.
Base.Rounding.setroundingMethod
setrounding(T, mode)
Set the rounding mode of floating point type T, controlling the rounding of basic arithmetic functions (+, -, *, / and sqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default RoundNearest.
Note that this may affect other types, for instance changing the rounding mode of Float64 will change the rounding mode of Float32. See RoundingMode for available modes.
This feature is still experimental, and may give unexpected or incorrect values.
Base.Rounding.setroundingMethod
setrounding(f::Function, T, mode)
Change the rounding mode of floating point type T for the duration of f. It is logically equivalent to:
old = rounding(T) setrounding(T, mode) f() setrounding(T, old)
See RoundingMode for available rounding modes.
This feature is still experimental, and may give unexpected or incorrect values. A known problem is the interaction with compiler optimisations, e.g.
julia> setrounding(Float64,RoundDown) do
1.1 + 0.1
end
1.2000000000000002
Here the compiler is constant folding, that is evaluating a known constant expression at compile time, however the rounding mode is only changed at runtime, so this is not reflected in the function result. This can be avoided by moving constants outside the expression, e.g.
julia> x = 1.1; y = 0.1;
julia> setrounding(Float64,RoundDown) do
x + y
end
1.2
Base.Rounding.get_zero_subnormalsFunction
get_zero_subnormals() -> Bool
Returns false if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and true if they might be converted to zeros.
Base.Rounding.set_zero_subnormalsFunction
set_zero_subnormals(yes::Bool) -> Bool
If yes is false, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns true unless yes==true but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true) can speed up some computations on some hardware. However, it can break identities such as (x-y==0) == (x==y).
Integers
Base.count_onesFunction
count_ones(x::Integer) -> Integer
Number of ones in the binary representation of x.
julia> count_ones(7) 3source
Base.count_zerosFunction
count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of x.
julia> count_zeros(Int32(2 ^ 16 - 1)) 16source
Base.leading_zerosFunction
leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of x.
julia> leading_zeros(Int32(1)) 31source
Base.leading_onesFunction
leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of x.
julia> leading_ones(UInt32(2 ^ 32 - 2)) 31source
Base.trailing_zerosFunction
trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of x.
julia> trailing_zeros(2) 1source
Base.trailing_onesFunction
trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of x.
julia> trailing_ones(3) 2source
Base.isoddFunction
isodd(x::Integer) -> Bool
Returns true if x is odd (that is, not divisible by 2), and false otherwise.
julia> isodd(9) true julia> isodd(10) falsesource
Base.isevenFunction
iseven(x::Integer) -> Bool
Returns true is x is even (that is, divisible by 2), and false otherwise.
julia> iseven(9) false julia> iseven(10) truesource
BigFloats
The BigFloat type implements arbitrary-precision floating-point arithmetic using the GNU MPFR library.
Base.precisionFunction
precision(num::AbstractFloat)
Get the precision of a floating point number, as defined by the effective number of bits in the mantissa.
source
Base.precisionMethod
precision(BigFloat)
Get the precision (in bits) currently used for BigFloat arithmetic.
Base.MPFR.setprecisionFunction
setprecision([T=BigFloat,] precision::Int)
Set the precision (in bits) to be used for T arithmetic.
setprecision(f::Function, [T=BigFloat,] precision::Integer)
Change the T arithmetic precision (in bits) for the duration of f. It is logically equivalent to:
old = precision(BigFloat) setprecision(BigFloat, precision) f() setprecision(BigFloat, old)
Often used as setprecision(T, precision) do ... end
Base.MPFR.BigFloatMethod
BigFloat(x, prec::Int)
Create a representation of x as a BigFloat with precision prec.
Base.MPFR.BigFloatMethod
BigFloat(x, rounding::RoundingMode)
Create a representation of x as a BigFloat with the current global precision and rounding mode rounding.
Base.MPFR.BigFloatMethod
BigFloat(x, prec::Int, rounding::RoundingMode)
Create a representation of x as a BigFloat with precision prec and rounding mode rounding.
Base.MPFR.BigFloatMethod
BigFloat(x::String)
Create a representation of the string x as a BigFloat.
Random Numbers
Random number generation in Julia uses the Mersenne Twister library via MersenneTwister objects. Julia has a global RNG, which is used by default. Other RNG types can be plugged in by inheriting the AbstractRNG type; they can then be used to have multiple streams of random numbers. Besides MersenneTwister, Julia also provides the RandomDevice RNG type, which is a wrapper over the OS provided entropy.
Most functions related to random generation accept an optional AbstractRNG as the first argument, rng , which defaults to the global one if not provided. Morever, some of them accept optionally dimension specifications dims... (which can be given as a tuple) to generate arrays of random values.
A MersenneTwister or RandomDevice RNG can generate random numbers of the following types: Float16, Float32, Float64, Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt (or complex numbers of those types). Random floating point numbers are generated uniformly in $[0, 1)$. As BigInt represents unbounded integers, the interval must be specified (e.g. rand(big(1:6))).
Base.Random.srandFunction
srand([rng=GLOBAL_RNG], [seed]) -> rng srand([rng=GLOBAL_RNG], filename, n=4) -> rng
Reseed the random number generator. If a seed is provided, the RNG will give a reproducible sequence of numbers, otherwise Julia will get entropy from the system. For MersenneTwister, the seed may be a non-negative integer, a vector of UInt32 integers or a filename, in which case the seed is read from a file (4n bytes are read from the file, where n is an optional argument). RandomDevice does not support seeding.
Base.Random.MersenneTwisterType
MersenneTwister(seed)
Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be useful for generating different streams of random numbers.
Example
julia> rng = MersenneTwister(1234);source
Base.Random.RandomDeviceType
RandomDevice()
Create a RandomDevice RNG object. Two such objects will always generate different streams of random numbers.
Base.Random.randFunction
rand([rng=GLOBAL_RNG], [S], [dims...])
Pick a random element or array of random elements from the set of values specified by S; S can be
an indexable collection (for example
1:nor['x','y','z']), ora type: the set of values to pick from is then equivalent to
typemin(S):typemax(S)for integers (this is not applicable toBigInt), and to $[0, 1)$ for floating point numbers;
S defaults to Float64.
Base.Random.rand!Function
rand!([rng=GLOBAL_RNG], A, [coll])
Populate the array A with random values. If the indexable collection coll is specified, the values are picked randomly from coll. This is equivalent to copy!(A, rand(rng, coll, size(A))) or copy!(A, rand(rng, eltype(A), size(A))) but without allocating a new array.
Example
julia> rng = MersenneTwister(1234);
julia> rand!(rng, zeros(5))
5-element Array{Float64,1}:
0.590845
0.766797
0.566237
0.460085
0.794026
source
Base.Random.bitrandFunction
bitrand([rng=GLOBAL_RNG], [dims...])
Generate a BitArray of random boolean values.
Example
julia> rng = MersenneTwister(1234);
julia> bitrand(rng, 10)
10-element BitArray{1}:
true
true
true
false
true
false
false
true
false
true
source
Base.Random.randnFunction
randn([rng=GLOBAL_RNG], [T=Float64], [dims...])
Generate a normally-distributed random number of type T with mean 0 and standard deviation 1. Optionally generate an array of normally-distributed random numbers. The Base module currently provides an implementation for the types Float16, Float32, and Float64 (the default).
Examples
julia> rng = MersenneTwister(1234);
julia> randn(rng, Float64)
0.8673472019512456
julia> randn(rng, Float32, (2, 4))
2×4 Array{Float32,2}:
-0.901744 -0.902914 2.21188 -0.271735
-0.494479 0.864401 0.532813 0.502334
source
Base.Random.randn!Function
randn!([rng=GLOBAL_RNG], A::AbstractArray) -> A
Fill the array A with normally-distributed (mean 0, standard deviation 1) random numbers. Also see the rand function.
Example
julia> rng = MersenneTwister(1234);
julia> randn!(rng, zeros(5))
5-element Array{Float64,1}:
0.867347
-0.901744
-0.494479
-0.902914
0.864401
source
Base.Random.randexpFunction
randexp([rng=GLOBAL_RNG], [T=Float64], [dims...])
Generate a random number of type T according to the exponential distribution with scale 1. Optionally generate an array of such random numbers. The Base module currently provides an implementation for the types Float16, Float32, and Float64 (the default).
Examples
julia> rng = MersenneTwister(1234);
julia> randexp(rng, Float32)
2.4835055f0
julia> randexp(rng, 3, 3)
3×3 Array{Float64,2}:
1.5167 1.30652 0.344435
0.604436 2.78029 0.418516
0.695867 0.693292 0.643644
source
Base.Random.randexp!Function
randexp!([rng=GLOBAL_RNG], A::AbstractArray) -> A
Fill the array A with random numbers following the exponential distribution (with scale 1).
Example
julia> rng = MersenneTwister(1234);
julia> randexp!(rng, zeros(5))
5-element Array{Float64,1}:
2.48351
1.5167
0.604436
0.695867
1.30652
source
Base.Random.randjumpFunction
randjump(r::MersenneTwister, jumps::Integer, [jumppoly::AbstractString=dSFMT.JPOLY1e21]) -> Vector{MersenneTwister}
Create an array of the size jumps of initialized MersenneTwister RNG objects. The first RNG object given as a parameter and following MersenneTwister RNGs in the array are initialized such that a state of the RNG object in the array would be moved forward (without generating numbers) from a previous RNG object array element on a particular number of steps encoded by the jump polynomial jumppoly.
Default jump polynomial moves forward MersenneTwister RNG state by 10^20 steps.
© 2009–2016 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/release-0.6/stdlib/numbers/