Arrays
Constructors and Types
Core.AbstractArrayType
AbstractArray{T, N}
Abstract array supertype which arrays inherit from.
source
Core.ArrayType
Array{T}(dims)
Array{T,N}(dims)
Construct an uninitialized N-dimensional dense array with element type T, where N is determined from the length or number of dims. dims may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If the rank N is supplied explicitly as in Array{T,N}(dims), then it must match the length or number of dims.
Example
julia> A = Array{Float64, 2}(2, 2);
julia> ndims(A)
2
julia> eltype(A)
Float64
source
Base.getindexMethod
getindex(type[, elements...])
Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be specified using Type[a,b,c,...].
Example
julia> Int8[1, 2, 3]
3-element Array{Int8,1}:
1
2
3
julia> getindex(Int8, 1, 2, 3)
3-element Array{Int8,1}:
1
2
3
source
Base.zerosFunction
zeros([A::AbstractArray,] [T=eltype(A)::Type,] [dims=size(A)::Tuple])
Create an array of all zeros with the same layout as A, element type T and size dims. The A argument can be skipped, which behaves like Array{Float64,0}() was passed. For convenience dims may also be passed in variadic form.
Examples
julia> zeros(1)
1-element Array{Float64,1}:
0.0
julia> zeros(Int8, 2, 3)
2×3 Array{Int8,2}:
0 0 0
0 0 0
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> zeros(A)
2×2 Array{Int64,2}:
0 0
0 0
julia> zeros(A, Float64)
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
julia> zeros(A, Bool, (3,))
3-element Array{Bool,1}:
false
false
false
source
Base.onesFunction
ones([A::AbstractArray,] [T=eltype(A)::Type,] [dims=size(A)::Tuple])
Create an array of all ones with the same layout as A, element type T and size dims. The A argument can be skipped, which behaves like Array{Float64,0}() was passed. For convenience dims may also be passed in variadic form.
Examples
julia> ones(Complex128, 2, 3)
2×3 Array{Complex{Float64},2}:
1.0+0.0im 1.0+0.0im 1.0+0.0im
1.0+0.0im 1.0+0.0im 1.0+0.0im
julia> ones(1,2)
1×2 Array{Float64,2}:
1.0 1.0
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> ones(A)
2×2 Array{Int64,2}:
1 1
1 1
julia> ones(A, Float64)
2×2 Array{Float64,2}:
1.0 1.0
1.0 1.0
julia> ones(A, Bool, (3,))
3-element Array{Bool,1}:
true
true
true
source
Base.BitArrayType
BitArray(dims::Integer...)
BitArray{N}(dims::NTuple{N,Int})
Construct an uninitialized BitArray with the given dimensions. Behaves identically to the Array constructor.
julia> BitArray(2, 2)
2×2 BitArray{2}:
false false
false true
julia> BitArray((3, 1))
3×1 BitArray{2}:
false
true
false
sourceBitArray(itr)
Construct a BitArray generated by the given iterable object. The shape is inferred from the itr object.
julia> BitArray([1 0; 0 1])
2×2 BitArray{2}:
true false
false true
julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)
2×3 BitArray{2}:
false true false
true false false
julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)
6-element BitArray{1}:
false
true
false
true
false
false
source
Base.truesFunction
trues(dims)
Create a BitArray with all values set to true.
julia> trues(2,3)
2×3 BitArray{2}:
true true true
true true true
sourcetrues(A)
Create a BitArray with all values set to true of the same shape as A.
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> trues(A)
2×2 BitArray{2}:
true true
true true
source
Base.falsesFunction
falses(dims)
Create a BitArray with all values set to false.
julia> falses(2,3)
2×3 BitArray{2}:
false false false
false false false
sourcefalses(A)
Create a BitArray with all values set to false of the same shape as A.
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> falses(A)
2×2 BitArray{2}:
false false
false false
source
Base.fillFunction
fill(x, dims)
Create an array filled with the value x. For example, fill(1.0, (5,5)) returns a 5×5 array of floats, with each element initialized to 1.0.
julia> fill(1.0, (5,5))
5×5 Array{Float64,2}:
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0
If x is an object reference, all elements will refer to the same object. fill(Foo(), dims) will return an array filled with the result of evaluating Foo() once.
Base.fill!Function
fill!(A, x)
Fill array A with the value x. If x is an object reference, all elements will refer to the same object. fill!(A, Foo()) will return A filled with the result of evaluating Foo() once.
Examples
julia> A = zeros(2,3)
2×3 Array{Float64,2}:
0.0 0.0 0.0
0.0 0.0 0.0
julia> fill!(A, 2.)
2×3 Array{Float64,2}:
2.0 2.0 2.0
2.0 2.0 2.0
julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(3), a); a[1] = 2; A
3-element Array{Array{Int64,1},1}:
[2, 1, 1]
[2, 1, 1]
[2, 1, 1]
julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(3), f())
3-element Array{Int64,1}:
1
1
1
source
Base.similarMethod
similar(array, [element_type=eltype(array)], [dims=size(array)])
Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array's eltype and size. The dimensions may be specified either as a single tuple argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is an Array{element_type}(dims...).
For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are neither mutable nor support 2 dimensions:
julia> similar(1:10, 1, 4)
1×4 Array{Int64,2}:
4419743872 4374413872 4419743888 0
Conversely, similar(trues(10,10), 2) returns an uninitialized BitVector with two elements since BitArrays are both mutable and can support 1-dimensional arrays:
julia> similar(trues(10,10), 2)
2-element BitArray{1}:
false
false
Since BitArrays can only store elements of type Bool, however, if you request a different element type it will create a regular Array instead:
julia> similar(falses(10), Float64, 2, 4)
2×4 Array{Float64,2}:
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314
source
Base.similarMethod
similar(storagetype, indices)
Create an uninitialized mutable array analogous to that specified by storagetype, but with indices specified by the last argument. storagetype might be a type or a function.
Examples:
similar(Array{Int}, indices(A))
creates an array that "acts like" an Array{Int} (and might indeed be backed by one), but which is indexed identically to A. If A has conventional indexing, this will be identical to Array{Int}(size(A)), but if A has unconventional indexing then the indices of the result will match A.
similar(BitArray, (indices(A, 2),))
would create a 1-dimensional logical array whose indices match those of the columns of A.
similar(dims->zeros(Int, dims), indices(A))
would create an array of Int, initialized to zero, matching the indices of A.
Base.eyeFunction
eye([T::Type=Float64,] m::Integer, n::Integer)
m-by-n identity matrix. The default element type is Float64.
Examples
julia> eye(3, 4)
3×4 Array{Float64,2}:
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
julia> eye(2, 2)
2×2 Array{Float64,2}:
1.0 0.0
0.0 1.0
julia> eye(Int, 2, 2)
2×2 Array{Int64,2}:
1 0
0 1
sourceeye(m, n)
m-by-n identity matrix.
eye([T::Type=Float64,] n::Integer)
n-by-n identity matrix. The default element type is Float64.
Examples
julia> eye(Int, 2)
2×2 Array{Int64,2}:
1 0
0 1
julia> eye(2)
2×2 Array{Float64,2}:
1.0 0.0
0.0 1.0
sourceeye(A)
Constructs an identity matrix of the same dimensions and type as A.
julia> A = [1 2 3; 4 5 6; 7 8 9]
3×3 Array{Int64,2}:
1 2 3
4 5 6
7 8 9
julia> eye(A)
3×3 Array{Int64,2}:
1 0 0
0 1 0
0 0 1
Note the difference from ones.
Base.linspaceFunction
linspace(start, stop, n=50)
Construct a range of n linearly spaced elements from start to stop.
julia> linspace(1.3,2.9,9) 1.3:0.2:2.9source
Base.logspaceFunction
logspace(start::Real, stop::Real, n::Integer=50)
Construct a vector of n logarithmically spaced numbers from 10^start to 10^stop.
julia> logspace(1.,10.,5)
5-element Array{Float64,1}:
10.0
1778.28
3.16228e5
5.62341e7
1.0e10
source
Base.Random.randsubseqFunction
randsubseq(A, p) -> Vector
Return a vector consisting of a random subsequence of the given array A, where each element of A is included (in order) with independent probability p. (Complexity is linear in p*length(A), so this function is efficient even if p is small and A is large.) Technically, this process is known as "Bernoulli sampling" of A.
Base.Random.randsubseq!Function
randsubseq!(S, A, p)
Like randsubseq, but the results are stored in S (which is resized as needed).
Basic functions
Base.ndimsFunction
ndims(A::AbstractArray) -> Integer
Returns the number of dimensions of A.
julia> A = ones(3,4,5); julia> ndims(A) 3source
Base.sizeFunction
size(A::AbstractArray, [dim...])
Returns a tuple containing the dimensions of A. Optionally you can specify the dimension(s) you want the length of, and get the length of that dimension, or a tuple of the lengths of dimensions you asked for.
julia> A = ones(2,3,4); julia> size(A, 2) 3 julia> size(A,3,2) (4, 3)source
Base.indicesMethod
indices(A)
Returns the tuple of valid indices for array A.
julia> A = ones(5,6,7); julia> indices(A) (Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))source
Base.indicesMethod
indices(A, d)
Returns the valid range of indices for array A along dimension d.
julia> A = ones(5,6,7); julia> indices(A,2) Base.OneTo(6)source
Base.lengthMethod
length(A::AbstractArray) -> Integer
Returns the number of elements in A.
julia> A = ones(3,4,5); julia> length(A) 60source
Base.eachindexFunction
eachindex(A...)
Creates an iterable object for visiting each index of an AbstractArray A in an efficient manner. For array types that have opted into fast linear indexing (like Array), this is simply the range 1:length(A). For other array types, this returns a specialized Cartesian range to efficiently index into the array with indices specified for every dimension. For other iterables, including strings and dictionaries, this returns an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
Example for a sparse 2-d array:
julia> A = sparse([1, 1, 2], [1, 3, 1], [1, 2, -5])
2×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:
[1, 1] = 1
[2, 1] = -5
[1, 3] = 2
julia> for iter in eachindex(A)
@show iter.I[1], iter.I[2]
@show A[iter]
end
(iter.I[1], iter.I[2]) = (1, 1)
A[iter] = 1
(iter.I[1], iter.I[2]) = (2, 1)
A[iter] = -5
(iter.I[1], iter.I[2]) = (1, 2)
A[iter] = 0
(iter.I[1], iter.I[2]) = (2, 2)
A[iter] = 0
(iter.I[1], iter.I[2]) = (1, 3)
A[iter] = 2
(iter.I[1], iter.I[2]) = (2, 3)
A[iter] = 0
If you supply more than one AbstractArray argument, eachindex will create an iterable object that is fast for all arguments (a UnitRange if all inputs have fast linear indexing, a CartesianRange otherwise). If the arrays have different sizes and/or dimensionalities, eachindex returns an iterable that spans the largest range along each dimension.
Base.linearindicesFunction
linearindices(A)
Returns a UnitRange specifying the valid range of indices for A[i] where i is an Int. For arrays with conventional indexing (indices start at 1), or any multidimensional array, this is 1:length(A); however, for one-dimensional arrays with unconventional indices, this is indices(A, 1).
Calling this function is the "safe" way to write algorithms that exploit linear indexing.
julia> A = ones(5,6,7); julia> b = linearindices(A); julia> extrema(b) (1, 210)source
Base.IndexStyleType
IndexStyle(A) IndexStyle(typeof(A))
IndexStyle specifies the "native indexing style" for array A. When you define a new AbstractArray type, you can choose to implement either linear indexing or cartesian indexing. If you decide to implement linear indexing, then you must set this trait for your array type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()
The default is IndexCartesian().
Julia's internal indexing machinery will automatically (and invisibly) convert all indexing operations into the preferred style using sub2ind or ind2sub. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.
If you define both styles of indexing for your AbstractArray, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular, eachindex creates an iterator whose type depends on the setting of this trait.
Base.countnzFunction
countnz(A) -> Integer
Counts the number of nonzero values in array A (dense or sparse). Note that this is not a constant-time operation. For sparse matrices, one should usually use nnz, which returns the number of stored values.
julia> A = [1 2 4; 0 0 1; 1 1 0]
3×3 Array{Int64,2}:
1 2 4
0 0 1
1 1 0
julia> countnz(A)
6
source
Base.conj!Function
conj!(A)
Transform an array to its complex conjugate in-place.
See also conj.
Example
julia> A = [1+im 2-im; 2+2im 3+im]
2×2 Array{Complex{Int64},2}:
1+1im 2-1im
2+2im 3+1im
julia> conj!(A);
julia> A
2×2 Array{Complex{Int64},2}:
1-1im 2+1im
2-2im 3-1im
source
Base.strideFunction
stride(A, k::Integer)
Returns the distance in memory (in number of elements) between adjacent elements in dimension k.
julia> A = ones(3,4,5); julia> stride(A,2) 3 julia> stride(A,3) 12source
Base.stridesFunction
strides(A)
Returns a tuple of the memory strides in each dimension.
julia> A = ones(3,4,5); julia> strides(A) (1, 3, 12)source
Base.ind2subFunction
ind2sub(a, index) -> subscripts
Returns a tuple of subscripts into array a corresponding to the linear index index.
julia> A = ones(5,6,7); julia> ind2sub(A,35) (5, 1, 2) julia> ind2sub(A,70) (5, 2, 3)source
ind2sub(dims, index) -> subscripts
Returns a tuple of subscripts into an array with dimensions dims, corresponding to the linear index index.
Example:
i, j, ... = ind2sub(size(A), indmax(A))
provides the indices of the maximum element.
julia> ind2sub((3,4),2) (2, 1) julia> ind2sub((3,4),3) (3, 1) julia> ind2sub((3,4),4) (1, 2)source
Base.sub2indFunction
sub2ind(dims, i, j, k...) -> index
The inverse of ind2sub, returns the linear index corresponding to the provided subscripts.
julia> sub2ind((5,6,7),1,2,3) 66 julia> sub2ind((5,6,7),1,6,3) 86source
Base.LinAlg.checksquareFunction
LinAlg.checksquare(A)
Check that a matrix is square, then return its common dimension. For multiple arguments, return a vector.
Example
julia> A = ones(4,4); B = zeros(5,5);
julia> LinAlg.checksquare(A, B)
2-element Array{Int64,1}:
4
5
sourceBroadcast and vectorization
See also the dot syntax for vectorizing functions; for example, f.(args...) implicitly calls broadcast(f, args...). Rather than relying on "vectorized" methods of functions like sin to operate on arrays, you should use sin.(a) to vectorize via broadcast.
Base.broadcastFunction
broadcast(f, As...)
Broadcasts the arrays, tuples, Refs, nullables, and/or scalars As to a container of the appropriate type and dimensions. In this context, anything that is not a subtype of AbstractArray, Ref (except for Ptrs), Tuple, or Nullable is considered a scalar. The resulting container is established by the following rules:
If all the arguments are scalars, it returns a scalar.
If the arguments are tuples and zero or more scalars, it returns a tuple.
If the arguments contain at least one array or
Ref, it returns an array (expanding singleton dimensions), and treatsRefs as 0-dimensional arrays, and tuples as 1-dimensional arrays.
The following additional rule applies to Nullable arguments: If there is at least one Nullable, and all the arguments are scalars or Nullable, it returns a Nullable treating Nullables as "containers".
A special syntax exists for broadcasting: f.(args...) is equivalent to broadcast(f, args...), and nested f.(g.(args...)) calls are fused into a single broadcast loop.
julia> A = [1, 2, 3, 4, 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
julia> broadcast(+, A, B)
5×2 Array{Int64,2}:
2 3
5 6
8 9
11 12
14 15
julia> parse.(Int, ["1", "2"])
2-element Array{Int64,1}:
1
2
julia> abs.((1, -2))
(1, 2)
julia> broadcast(+, 1.0, (0, -2.0))
(1.0, -1.0)
julia> broadcast(+, 1.0, (0, -2.0), Ref(1))
2-element Array{Float64,1}:
2.0
0.0
julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))
2-element Array{Array{Int64,1},1}:
[1, 1]
[2, 2]
julia> string.(("one","two","three","four"), ": ", 1:4)
4-element Array{String,1}:
"one: 1"
"two: 2"
"three: 3"
"four: 4"
julia> Nullable("X") .* "Y"
Nullable{String}("XY")
julia> broadcast(/, 1.0, Nullable(2.0))
Nullable{Float64}(0.5)
julia> (1 + im) ./ Nullable{Int}()
Nullable{Complex{Float64}}()
source
Base.broadcast!Function
broadcast!(f, dest, As...)
Like broadcast, but store the result of broadcast(f, As...) in the dest array. Note that dest is only used to store the result, and does not supply arguments to f unless it is also listed in the As, as in broadcast!(f, A, A, B) to perform A[:] = broadcast(f, A, B).
Base.Broadcast.@__dot__Macro
@. expr
Convert every function call or operator in expr into a "dot call" (e.g. convert f(x) to f.(x)), and convert every assignment in expr to a "dot assignment" (e.g. convert += to .+=).
If you want to avoid adding dots for selected function calls in expr, splice those function calls in with $. For example, @. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x))) (no dot for sort).
(@. is equivalent to a call to @__dot__.)
julia> x = 1.0:3.0; y = similar(x);
julia> @. y = x + 3 * sin(x)
3-element Array{Float64,1}:
3.52441
4.72789
3.42336
source
Base.Broadcast.broadcast_getindexFunction
broadcast_getindex(A, inds...)
Broadcasts the inds arrays to a common size like broadcast and returns an array of the results A[ks...], where ks goes over the positions in the broadcast result A.
julia> A = [1, 2, 3, 4, 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]
5×2 Array{Int64,2}:
1 2
3 4
5 6
7 8
9 10
julia> C = broadcast(+,A,B)
5×2 Array{Int64,2}:
2 3
5 6
8 9
11 12
14 15
julia> broadcast_getindex(C,[1,2,10])
3-element Array{Int64,1}:
2
5
15
source
Base.Broadcast.broadcast_setindex!Function
broadcast_setindex!(A, X, inds...)
Broadcasts the X and inds arrays to a common size and stores the value from each position in X at the indices in A given by the same positions in inds.
Indexing and assignment
Base.getindexMethod
getindex(A, inds...)
Returns a subset of array A as specified by inds, where each ind may be an Int, a Range, or a Vector. See the manual section on array indexing for details.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> getindex(A, 1)
1
julia> getindex(A, [2, 1])
2-element Array{Int64,1}:
3
1
julia> getindex(A, 2:4)
3-element Array{Int64,1}:
3
2
4
source
Base.setindex!Method
setindex!(A, X, inds...)
Store values from array X within some subset of A as specified by inds.
Base.copy!Method
copy!(dest, Rdest::CartesianRange, src, Rsrc::CartesianRange) -> dest
Copy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the two regions must match.
Base.isassignedFunction
isassigned(array, i) -> Bool
Tests whether the given array has a value associated with index i. Returns false if the index is out of bounds, or has an undefined reference.
julia> isassigned(rand(3, 3), 5)
true
julia> isassigned(rand(3, 3), 3 * 3 + 1)
false
julia> mutable struct Foo end
julia> v = similar(rand(3), Foo)
3-element Array{Foo,1}:
#undef
#undef
#undef
julia> isassigned(v, 1)
false
source
Base.ColonType
Colon()
Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted by to_indices to an internal vector type (Base.Slice) to represent the collection of indices they span before being used.
Base.IteratorsMD.CartesianIndexType
CartesianIndex(i, j, k...) -> I CartesianIndex((i, j, k...)) -> I
Create a multidimensional index I, which can be used for indexing a multidimensional array A. In particular, A[I] is equivalent to A[i,j,k...]. One can freely mix integer and CartesianIndex indices; for example, A[Ipre, i, Ipost] (where Ipre and Ipost are CartesianIndex indices and i is an Int) can be a useful expression when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.
A CartesianIndex is sometimes produced by eachindex, and always when iterating with an explicit CartesianRange.
Example
julia> A = reshape(collect(1:16), (2, 2, 2, 2))
2×2×2×2 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> A[CartesianIndex((1, 1, 1, 1))]
1
julia> A[CartesianIndex((1, 1, 1, 2))]
9
julia> A[CartesianIndex((1, 1, 2, 1))]
5
source
Base.IteratorsMD.CartesianRangeType
CartesianRange(Istart::CartesianIndex, Istop::CartesianIndex) -> R CartesianRange(sz::Dims) -> R CartesianRange(istart:istop, jstart:jstop, ...) -> R
Define a region R spanning a multidimensional rectangular range of integer indices. These are most commonly encountered in the context of iteration, where for I in R ... end will return CartesianIndex indices I equivalent to the nested loops
for j = jstart:jstop
for i = istart:istop
...
end
end
Consequently these can be useful for writing algorithms that work in arbitrary dimensions.
julia> foreach(println, CartesianRange((2, 2, 2)))
CartesianIndex{3}((1, 1, 1))
CartesianIndex{3}((2, 1, 1))
CartesianIndex{3}((1, 2, 1))
CartesianIndex{3}((2, 2, 1))
CartesianIndex{3}((1, 1, 2))
CartesianIndex{3}((2, 1, 2))
CartesianIndex{3}((1, 2, 2))
CartesianIndex{3}((2, 2, 2))
source
Base.to_indicesFunction
to_indices(A, I::Tuple)
Convert the tuple I to a tuple of indices for use in indexing into array A.
The returned tuple must only contain either Ints or AbstractArrays of scalar indices that are supported by array A. It will error upon encountering a novel index type that it does not know how to process.
For simple index types, it defers to the unexported Base.to_index(A, i) to process each index i. While this internal function is not intended to be called directly, Base.to_index may be extended by custom array or index types to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into which they index. To support those cases, to_indices(A, I) calls to_indices(A, indices(A), I), which then recursively walks through both the given tuple of indices and the dimensional indices of A in tandem. As such, not all index types are guaranteed to propagate to Base.to_index.
Base.checkboundsFunction
checkbounds(Bool, A, I...)
Return true if the specified indices I are in bounds for the given array A. Subtypes of AbstractArray should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely on A's indices and checkindex.
See also checkindex.
julia> A = rand(3, 3); julia> checkbounds(Bool, A, 2) true julia> checkbounds(Bool, A, 3, 4) false julia> checkbounds(Bool, A, 1:3) true julia> checkbounds(Bool, A, 1:3, 2:4) falsesource
checkbounds(A, I...)
Throw an error if the specified indices I are not in bounds for the given array A.
Base.checkindexFunction
checkindex(Bool, inds::AbstractUnitRange, index)
Return true if the given index is within the bounds of inds. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation.
julia> checkindex(Bool,1:20,8) true julia> checkindex(Bool,1:20,21) falsesource
Views (SubArrays and other view types)
Base.viewFunction
view(A, inds...)
Like getindex, but returns a view into the parent array A with the given indices instead of making a copy. Calling getindex or setindex! on the returned SubArray computes the indices to the parent array on the fly without checking bounds.
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> b = view(A, :, 1)
2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:
1
3
julia> fill!(b, 0)
2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:
0
0
julia> A # Note A has changed even though we modified b
2×2 Array{Int64,2}:
0 2
0 4
source
Base.@viewMacro
@view A[inds...]
Creates a SubArray from an indexing expression. This can only be applied directly to a reference expression (e.g. @view A[1,2:end]), and should not be used as the target of an assignment (e.g. @view(A[1,2:end]) = ...). See also @views to switch an entire block of code to use views for slicing.
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> b = @view A[:, 1]
2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:
1
3
julia> fill!(b, 0)
2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:
0
0
julia> A
2×2 Array{Int64,2}:
0 2
0 4
source
Base.@viewsMacro
@views expression
Convert every array-slicing operation in the given expression (which may be a begin/end block, loop, function, etc.) to return a view. Scalar indices, non-array types, and explicit getindex calls (as opposed to array[...]) are unaffected.
Note that the @views macro only affects array[...] expressions that appear explicitly in the given expression, not array slicing that occurs in functions called by that code.
Base.parentFunction
parent(A)
Returns the "parent array" of an array view type (e.g., SubArray), or the array itself if it is not a view.
Base.parentindexesFunction
parentindexes(A)
From an array view A, returns the corresponding indexes in the parent.
Base.slicedimFunction
slicedim(A, d::Integer, i)
Return all the data of A where the index for dimension d equals i. Equivalent to A[:,:,...,i,:,:,...] where i is in position d.
Example
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Array{Int64,2}:
1 2 3 4
5 6 7 8
julia> slicedim(A,2,3)
2-element Array{Int64,1}:
3
7
source
Base.reinterpretFunction
reinterpret(type, A)
Change the type-interpretation of a block of memory. For arrays, this constructs an array with the same binary data as the given array, but with the specified element type. For example, reinterpret(Float32, UInt32(7)) interprets the 4 bytes corresponding to UInt32(7) as a Float32.
It is not allowed to reinterpret an array to an element type with a larger alignment then the alignment of the array. For a normal Array, this is the alignment of its element type. For a reinterpreted array, this is the alignment of the Array it was reinterpreted from. For example, reinterpret(UInt32, UInt8[0, 0, 0, 0]) is not allowed but reinterpret(UInt32, reinterpret(UInt8, Float32[1.0])) is allowed.
Examples
julia> reinterpret(Float32, UInt32(7))
1.0f-44
julia> reinterpret(Float32, UInt32[1 2 3 4 5])
1×5 Array{Float32,2}:
1.4013f-45 2.8026f-45 4.2039f-45 5.60519f-45 7.00649f-45
source
Base.reshapeFunction
reshape(A, dims...) -> R reshape(A, dims) -> R
Return an array R with the same data as A, but with different dimension sizes or number of dimensions. The two arrays share the same underlying data, so that setting elements of R alters the values of A and vice versa.
The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one dimension may be specified with a :, in which case its length is computed such that its product with all the specified dimensions is equal to the length of the original array A. The total number of elements must not change.
julia> A = collect(1:16)
16-element Array{Int64,1}:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
julia> reshape(A, (4, 4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> reshape(A, 2, :)
2×8 Array{Int64,2}:
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16
source
Base.squeezeFunction
squeeze(A, dims)
Remove the dimensions specified by dims from array A. Elements of dims must be unique and within the range 1:ndims(A). size(A,i) must equal 1 for all i in dims.
Example
julia> a = reshape(collect(1:4),(2,2,1,1))
2×2×1×1 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
julia> squeeze(a,3)
2×2×1 Array{Int64,3}:
[:, :, 1] =
1 3
2 4
source
Base.vecFunction
vec(a::AbstractArray) -> Vector
Reshape the array a as a one-dimensional column vector. The resulting array shares the same underlying data as a, so modifying one will also modify the other.
Example
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> vec(a)
6-element Array{Int64,1}:
1
4
2
5
3
6
See also reshape.
Concatenation and permutation
Base.catFunction
cat(dims, A...)
Concatenate the input arrays along the specified dimensions in the iterable dims. For dimensions not in dims, all input arrays should have the same size, which will also be the size of the output array along that dimension. For dimensions in dims, the size of the output array is the sum of the sizes of the input arrays along that dimension. If dims is a single number, the different arrays are tightly stacked along that dimension. If dims is an iterable containing several dimensions, this allows one to construct block diagonal matrices and their higher-dimensional analogues by simultaneously increasing several dimensions for every new input array and putting zero blocks elsewhere. For example, cat([1,2], matrices...) builds a block diagonal matrix, i.e. a block matrix with matrices[1], matrices[2], ... as diagonal blocks and matching zero blocks away from the diagonal.
Base.vcatFunction
vcat(A...)
Concatenate along dimension 1.
julia> a = [1 2 3 4 5]
1×5 Array{Int64,2}:
1 2 3 4 5
julia> b = [6 7 8 9 10; 11 12 13 14 15]
2×5 Array{Int64,2}:
6 7 8 9 10
11 12 13 14 15
julia> vcat(a,b)
3×5 Array{Int64,2}:
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
julia> c = ([1 2 3], [4 5 6])
([1 2 3], [4 5 6])
julia> vcat(c...)
2×3 Array{Int64,2}:
1 2 3
4 5 6
source
Base.hcatFunction
hcat(A...)
Concatenate along dimension 2.
julia> a = [1; 2; 3; 4; 5]
5-element Array{Int64,1}:
1
2
3
4
5
julia> b = [6 7; 8 9; 10 11; 12 13; 14 15]
5×2 Array{Int64,2}:
6 7
8 9
10 11
12 13
14 15
julia> hcat(a,b)
5×3 Array{Int64,2}:
1 6 7
2 8 9
3 10 11
4 12 13
5 14 15
julia> c = ([1; 2; 3], [4; 5; 6])
([1, 2, 3], [4, 5, 6])
julia> hcat(c...)
3×2 Array{Int64,2}:
1 4
2 5
3 6
source
Base.hvcatFunction
hvcat(rows::Tuple{Vararg{Int}}, values...)
Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row.
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6
(1, 2, 3, 4, 5, 6)
julia> [a b c; d e f]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> hvcat((3,3), a,b,c,d,e,f)
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> [a b;c d; e f]
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> hvcat((2,2,2), a,b,c,d,e,f)
3×2 Array{Int64,2}:
1 2
3 4
5 6
If the first argument is a single integer n, then all block rows are assumed to have n block columns.
Base.flipdimFunction
flipdim(A, d::Integer)
Reverse A in dimension d.
Example
julia> b = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> flipdim(b,2)
2×2 Array{Int64,2}:
2 1
4 3
source
Base.circshiftFunction
circshift(A, shifts)
Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.
Example
julia> b = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Array{Int64,2}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Array{Int64,2}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
See also circshift!.
Base.circshift!Function
circshift!(dest, src, shifts)
Circularly shift the data in src, storing the result in dest. shifts specifies the amount to shift in each dimension.
The dest array must be distinct from the src array (they cannot alias each other).
See also circshift.
Base.circcopy!Function
circcopy!(dest, src)
Copy src to dest, indexing each dimension modulo its length. src and dest must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlap dest agrees with src.
Example
julia> src = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> dest = OffsetArray{Int}((0:3,2:5))
julia> circcopy!(dest, src)
OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:
8 12 16 4
5 9 13 1
6 10 14 2
7 11 15 3
julia> dest[1:3,2:4] == src[1:3,2:4]
true
source
Base.containsMethod
contains(fun, itr, x) -> Bool
Returns true if there is at least one element y in itr such that fun(y,x) is true.
julia> vec = [10, 100, 200]
3-element Array{Int64,1}:
10
100
200
julia> contains(==, vec, 200)
true
julia> contains(==, vec, 300)
false
julia> contains(>, vec, 100)
true
julia> contains(>, vec, 200)
false
source
Base.findMethod
find(A)
Return a vector of the linear indexes of the non-zeros in A (determined by A[i]!=0). A common use of this is to convert a boolean array to an array of indexes of the true elements. If there are no non-zero elements of A, find returns an empty array.
Examples
julia> A = [true false; false true]
2×2 Array{Bool,2}:
true false
false true
julia> find(A)
2-element Array{Int64,1}:
1
4
julia> find(zeros(3))
0-element Array{Int64,1}
source
Base.findMethod
find(f::Function, A)
Return a vector I of the linear indexes of A where f(A[I]) returns true. If there are no such elements of A, find returns an empty array.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> find(isodd,A)
2-element Array{Int64,1}:
1
2
julia> find(isodd, [2, 4])
0-element Array{Int64,1}
source
Base.findnFunction
findn(A)
Return a vector of indexes for each dimension giving the locations of the non-zeros in A (determined by A[i]!=0). If there are no non-zero elements of A, findn returns a 2-tuple of empty arrays.
Examples
julia> A = [1 2 0; 0 0 3; 0 4 0]
3×3 Array{Int64,2}:
1 2 0
0 0 3
0 4 0
julia> findn(A)
([1, 1, 3, 2], [1, 2, 2, 3])
julia> A = zeros(2,2)
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
julia> findn(A)
(Int64[], Int64[])
source
Base.findnzFunction
findnz(A)
Return a tuple (I, J, V) where I and J are the row and column indexes of the non-zero values in matrix A, and V is a vector of the non-zero values.
Example
julia> A = [1 2 0; 0 0 3; 0 4 0]
3×3 Array{Int64,2}:
1 2 0
0 0 3
0 4 0
julia> findnz(A)
([1, 1, 3, 2], [1, 2, 2, 3], [1, 2, 4, 3])
source
Base.findfirstMethod
findfirst(A)
Return the linear index of the first non-zero value in A (determined by A[i]!=0). Returns 0 if no such value is found.
Examples
julia> A = [0 0; 1 0]
2×2 Array{Int64,2}:
0 0
1 0
julia> findfirst(A)
2
julia> findfirst(zeros(3))
0
source
Base.findfirstMethod
findfirst(A, v)
Return the linear index of the first element equal to v in A. Returns 0 if v is not found.
Examples
julia> A = [4 6; 2 2]
2×2 Array{Int64,2}:
4 6
2 2
julia> findfirst(A,2)
2
julia> findfirst(A,3)
0
source
Base.findfirstMethod
findfirst(predicate::Function, A)
Return the linear index of the first element of A for which predicate returns true. Returns 0 if there is no such element.
Examples
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findfirst(iseven, A)
2
julia> findfirst(x -> x>10, A)
0
source
Base.findlastMethod
findlast(A)
Return the linear index of the last non-zero value in A (determined by A[i]!=0). Returns 0 if there is no non-zero value in A.
Examples
julia> A = [1 0; 1 0]
2×2 Array{Int64,2}:
1 0
1 0
julia> findlast(A)
2
julia> A = zeros(2,2)
2×2 Array{Float64,2}:
0.0 0.0
0.0 0.0
julia> findlast(A)
0
source
Base.findlastMethod
findlast(A, v)
Return the linear index of the last element equal to v in A. Returns 0 if there is no element of A equal to v.
Examples
julia> A = [1 2; 2 1]
2×2 Array{Int64,2}:
1 2
2 1
julia> findlast(A,1)
4
julia> findlast(A,2)
3
julia> findlast(A,3)
0
source
Base.findlastMethod
findlast(predicate::Function, A)
Return the linear index of the last element of A for which predicate returns true. Returns 0 if there is no such element.
Examples
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> findlast(isodd, A)
2
julia> findlast(x -> x > 5, A)
0
source
Base.findnextMethod
findnext(A, i::Integer)
Find the next linear index >= i of a non-zero element of A, or 0 if not found.
Examples
julia> A = [0 0; 1 0]
2×2 Array{Int64,2}:
0 0
1 0
julia> findnext(A,1)
2
julia> findnext(A,3)
0
source
Base.findnextMethod
findnext(predicate::Function, A, i::Integer)
Find the next linear index >= i of an element of A for which predicate returns true, or 0 if not found.
Examples
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findnext(isodd, A, 1)
1
julia> findnext(isodd, A, 2)
0
source
Base.findnextMethod
findnext(A, v, i::Integer)
Find the next linear index >= i of an element of A equal to v (using ==), or 0 if not found.
Examples
julia> A = [1 4; 2 2]
2×2 Array{Int64,2}:
1 4
2 2
julia> findnext(A,4,4)
0
julia> findnext(A,4,3)
3
source
Base.findprevMethod
findprev(A, i::Integer)
Find the previous linear index <= i of a non-zero element of A, or 0 if not found.
Examples
julia> A = [0 0; 1 2]
2×2 Array{Int64,2}:
0 0
1 2
julia> findprev(A,2)
2
julia> findprev(A,1)
0
source
Base.findprevMethod
findprev(predicate::Function, A, i::Integer)
Find the previous linear index <= i of an element of A for which predicate returns true, or 0 if not found.
Examples
julia> A = [4 6; 1 2]
2×2 Array{Int64,2}:
4 6
1 2
julia> findprev(isodd, A, 1)
0
julia> findprev(isodd, A, 3)
2
source
Base.findprevMethod
findprev(A, v, i::Integer)
Find the previous linear index <= i of an element of A equal to v (using ==), or 0 if not found.
Examples
julia> A = [0 0; 1 2]
2×2 Array{Int64,2}:
0 0
1 2
julia> findprev(A, 1, 4)
2
julia> findprev(A, 1, 1)
0
source
Base.permutedimsFunction
permutedims(A, perm)
Permute the dimensions of array A. perm is a vector specifying a permutation of length ndims(A). This is a generalization of transpose for multi-dimensional arrays. Transpose is equivalent to permutedims(A, [2,1]).
See also: PermutedDimsArray.
Example
julia> A = reshape(collect(1:8), (2,2,2))
2×2×2 Array{Int64,3}:
[:, :, 1] =
1 3
2 4
[:, :, 2] =
5 7
6 8
julia> permutedims(A, [3, 2, 1])
2×2×2 Array{Int64,3}:
[:, :, 1] =
1 3
5 7
[:, :, 2] =
2 4
6 8
source
Base.permutedims!Function
permutedims!(dest, src, perm)
Permute the dimensions of array src and store the result in the array dest. perm is a vector specifying a permutation of length ndims(src). The preallocated array dest should have size(dest) == size(src)[perm] and is completely overwritten. No in-place permutation is supported and unexpected results will happen if src and dest have overlapping memory regions.
See also permutedims.
Base.PermutedDimsArrays.PermutedDimsArrayType
PermutedDimsArray(A, perm) -> B
Given an AbstractArray A, create a view B such that the dimensions appear to be permuted. Similar to permutedims, except that no copying occurs (B shares storage with A).
See also: permutedims.
Example
julia> A = rand(3,5,4); julia> B = PermutedDimsArray(A, (3,1,2)); julia> size(B) (4, 3, 5) julia> B[3,1,2] == A[1,2,3] truesource
Base.promote_shapeFunction
promote_shape(s1, s2)
Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.
julia> a = ones(3,4,1,1,1); julia> b = ones(3,4); julia> promote_shape(a,b) (Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1)) julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1)) (2, 3, 1, 4, 1)source
Array functions
Base.accumulateMethod
accumulate(op, A, dim=1)
Cumulative operation op along a dimension dim (defaults to 1). See also accumulate! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow). For common operations there are specialized variants of accumulate, see: cumsum, cumprod
julia> accumulate(+, [1,2,3])
3-element Array{Int64,1}:
1
3
6
julia> accumulate(*, [1,2,3])
3-element Array{Int64,1}:
1
2
6
sourceaccumulate(op, v0, A)
Like accumulate, but using a starting element v0. The first entry of the result will be op(v0, first(A)). For example:
julia> accumulate(+, 100, [1,2,3])
3-element Array{Int64,1}:
101
103
106
julia> accumulate(min, 0, [1,2,-1])
3-element Array{Int64,1}:
0
0
-1
source
Base.accumulate!Function
accumulate!(op, B, A, dim=1)
Cumulative operation op on A along a dimension, storing the result in B. The dimension defaults to 1. See also accumulate.
Base.cumprodFunction
cumprod(A, dim=1)
Cumulative product along a dimension dim (defaults to 1). See also cumprod! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumprod(a,1)
2×3 Array{Int64,2}:
1 2 3
4 10 18
julia> cumprod(a,2)
2×3 Array{Int64,2}:
1 2 6
4 20 120
source
Base.cumprod!Function
cumprod!(B, A, dim::Integer=1)
Cumulative product of A along a dimension, storing the result in B. The dimension defaults to 1. See also cumprod.
Base.cumsumFunction
cumsum(A, dim=1)
Cumulative sum along a dimension dim (defaults to 1). See also cumsum! to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> cumsum(a,1)
2×3 Array{Int64,2}:
1 2 3
5 7 9
julia> cumsum(a,2)
2×3 Array{Int64,2}:
1 3 6
4 9 15
source
Base.cumsum!Function
cumsum!(B, A, dim::Integer=1)
Cumulative sum of A along a dimension, storing the result in B. The dimension defaults to 1. See also cumsum.
Base.cumsum_kbnFunction
cumsum_kbn(A, [dim::Integer=1])
Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy. The dimension defaults to 1.
source
Base.LinAlg.diffFunction
diff(A, [dim::Integer=1])
Finite difference operator of matrix or vector A. If A is a matrix, compute the finite difference over a dimension dim (default 1).
Example
julia> a = [2 4; 6 16]
2×2 Array{Int64,2}:
2 4
6 16
julia> diff(a,2)
2×1 Array{Int64,2}:
2
10
source
Base.LinAlg.gradientFunction
gradient(F::AbstractVector, [h::Real])
Compute differences along vector F, using h as the spacing between points. The default spacing is one.
Example
julia> a = [2,4,6,8];
julia> gradient(a)
4-element Array{Float64,1}:
2.0
2.0
2.0
2.0
source
Base.rot180Function
rot180(A)
Rotate matrix A 180 degrees.
Example
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a)
2×2 Array{Int64,2}:
4 3
2 1
sourcerot180(A, k)
Rotate matrix A 180 degrees an integer k number of times. If k is even, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a,1)
2×2 Array{Int64,2}:
4 3
2 1
julia> rot180(a,2)
2×2 Array{Int64,2}:
1 2
3 4
source
Base.rotl90Function
rotl90(A)
Rotate matrix A left 90 degrees.
Example
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a)
2×2 Array{Int64,2}:
2 4
1 3
sourcerotl90(A, k)
Rotate matrix A left 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a,1)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotl90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotl90(a,3)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotl90(a,4)
2×2 Array{Int64,2}:
1 2
3 4
source
Base.rotr90Function
rotr90(A)
Rotate matrix A right 90 degrees.
Example
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a)
2×2 Array{Int64,2}:
3 1
4 2
sourcerotr90(A, k)
Rotate matrix A right 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent to a copy.
Examples
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a,1)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotr90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotr90(a,3)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotr90(a,4)
2×2 Array{Int64,2}:
1 2
3 4
source
Base.reducedimFunction
reducedim(f, A, region[, v0])
Reduce 2-argument function f along dimensions of A. region is a vector specifying the dimensions to reduce, and v0 is the initial value to use in the reductions. For +, *, max and min the v0 argument is optional.
The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-to-right, you should write your own loop. See documentation for reduce.
Examples
julia> a = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> reducedim(max, a, 2)
4×1 Array{Int64,2}:
13
14
15
16
julia> reducedim(max, a, 1)
1×4 Array{Int64,2}:
4 8 12 16
source
Base.mapreducedimFunction
mapreducedim(f, op, A, region[, v0])
Evaluates to the same as reducedim(op, map(f, A), region, f(v0)), but is generally faster because the intermediate array is avoided.
Examples
julia> a = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> mapreducedim(isodd, *, a, 1)
1×4 Array{Bool,2}:
false false false false
julia> mapreducedim(isodd, |, a, 1, true)
1×4 Array{Bool,2}:
true true true true
source
Base.mapslicesFunction
mapslices(f, A, dims)
Transform the given dimensions of array A using function f. f is called on each slice of A of the form A[...,:,...,:,...]. dims is an integer vector specifying where the colons go in this expression. The results are concatenated along the remaining dimensions. For example, if dims is [1,2] and A is 4-dimensional, f is called on A[:,:,i,j] for all i and j.
Examples
julia> a = reshape(collect(1:16),(2,2,2,2))
2×2×2×2 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
[:, :, 2, 1] =
5 7
6 8
[:, :, 1, 2] =
9 11
10 12
[:, :, 2, 2] =
13 15
14 16
julia> mapslices(sum, a, [1,2])
1×1×2×2 Array{Int64,4}:
[:, :, 1, 1] =
10
[:, :, 2, 1] =
26
[:, :, 1, 2] =
42
[:, :, 2, 2] =
58
source
Base.sum_kbnFunction
sum_kbn(A)
Returns the sum of all elements of A, using the Kahan-Babuska-Neumaier compensated summation algorithm for additional accuracy.
Combinatorics
Base.Random.randpermFunction
randperm([rng=GLOBAL_RNG,] n::Integer)
Construct a random permutation of length n. The optional rng argument specifies a random number generator (see Random Numbers). To randomly permute a arbitrary vector, see shuffle or shuffle!.
Example
julia> rng = MersenneTwister(1234);
julia> randperm(rng, 4)
4-element Array{Int64,1}:
2
1
4
3
source
Base.invpermFunction
invperm(v)
Return the inverse permutation of v. If B = A[v], then A == B[invperm(v)].
Example
julia> v = [2; 4; 3; 1];
julia> invperm(v)
4-element Array{Int64,1}:
4
1
3
2
julia> A = ['a','b','c','d'];
julia> B = A[v]
4-element Array{Char,1}:
'b'
'd'
'c'
'a'
julia> B[invperm(v)]
4-element Array{Char,1}:
'a'
'b'
'c'
'd'
source
Base.ispermFunction
isperm(v) -> Bool
Returns true if v is a valid permutation.
Examples
julia> isperm([1; 2]) true julia> isperm([1; 3]) falsesource
Base.permute!Method
permute!(v, p)
Permute vector v in-place, according to permutation p. No checking is done to verify that p is a permutation.
To return a new permutation, use v[p]. Note that this is generally faster than permute!(v,p) for large vectors.
See also ipermute!.
Example
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> permute!(A, perm);
julia> A
4-element Array{Int64,1}:
1
4
3
1
source
Base.ipermute!Function
ipermute!(v, p)
Like permute!, but the inverse of the given permutation is applied.
Example
julia> A = [1, 1, 3, 4];
julia> perm = [2, 4, 3, 1];
julia> ipermute!(A, perm);
julia> A
4-element Array{Int64,1}:
4
1
3
1
source
Base.Random.randcycleFunction
randcycle([rng=GLOBAL_RNG,] n::Integer)
Construct a random cyclic permutation of length n. The optional rng argument specifies a random number generator, see Random Numbers.
Example
julia> rng = MersenneTwister(1234);
julia> randcycle(rng, 6)
6-element Array{Int64,1}:
3
5
4
6
1
2
source
Base.Random.shuffleFunction
shuffle([rng=GLOBAL_RNG,] v)
Return a randomly permuted copy of v. The optional rng argument specifies a random number generator (see Random Numbers). To permute v in-place, see shuffle!. To obtain randomly permuted indices, see randperm.
Example
julia> rng = MersenneTwister(1234);
julia> shuffle(rng, collect(1:10))
10-element Array{Int64,1}:
6
1
10
2
3
9
5
7
4
8
source
Base.Random.shuffle!Function
shuffle!([rng=GLOBAL_RNG,] v)
In-place version of shuffle: randomly permute the array v in-place, optionally supplying the random-number generator rng.
Example
julia> rng = MersenneTwister(1234);
julia> shuffle!(rng, collect(1:16))
16-element Array{Int64,1}:
2
15
5
14
1
9
10
6
11
3
16
7
4
12
8
13
source
Base.reverseFunction
reverse(v [, start=1 [, stop=length(v) ]] )
Return a copy of v reversed from start to stop.
Examples
julia> A = collect(1:5)
5-element Array{Int64,1}:
1
2
3
4
5
julia> reverse(A)
5-element Array{Int64,1}:
5
4
3
2
1
julia> reverse(A, 1, 4)
5-element Array{Int64,1}:
4
3
2
1
5
julia> reverse(A, 3, 5)
5-element Array{Int64,1}:
1
2
5
4
3
source
Base.reverseindFunction
reverseind(v, i)
Given an index i in reverse(v), return the corresponding index in v so that v[reverseind(v,i)] == reverse(v)[i]. (This can be nontrivial in the case where v is a Unicode string.)
Base.reverse!Function
reverse!(v [, start=1 [, stop=length(v) ]]) -> v
In-place version of reverse.
BitArrays
BitArrays are space-efficient "packed" boolean arrays, which store one bit per boolean value. They can be used similarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted to/from the latter via Array(bitarray) and BitArray(array), respectively.
Base.flipbits!Function
flipbits!(B::BitArray{N}) -> BitArray{N}
Performs a bitwise not operation on B. See ~.
Example
julia> A = trues(2,2)
2×2 BitArray{2}:
true true
true true
julia> flipbits!(A)
2×2 BitArray{2}:
false false
false false
source
Base.rol!Function
rol!(dest::BitVector, src::BitVector, i::Integer) -> BitVector
Performs a left rotation operation on src and puts the result into dest. i controls how far to rotate the bits.
rol!(B::BitVector, i::Integer) -> BitVector
Performs a left rotation operation in-place on B. i controls how far to rotate the bits.
Base.rolFunction
rol(B::BitVector, i::Integer) -> BitVector
Performs a left rotation operation, returning a new BitVector. i controls how far to rotate the bits. See also rol!.
Examples
julia> A = BitArray([true, true, false, false, true])
5-element BitArray{1}:
true
true
false
false
true
julia> rol(A,1)
5-element BitArray{1}:
true
false
false
true
true
julia> rol(A,2)
5-element BitArray{1}:
false
false
true
true
true
julia> rol(A,5)
5-element BitArray{1}:
true
true
false
false
true
source
Base.ror!Function
ror!(dest::BitVector, src::BitVector, i::Integer) -> BitVector
Performs a right rotation operation on src and puts the result into dest. i controls how far to rotate the bits.
ror!(B::BitVector, i::Integer) -> BitVector
Performs a right rotation operation in-place on B. i controls how far to rotate the bits.
Base.rorFunction
ror(B::BitVector, i::Integer) -> BitVector
Performs a right rotation operation on B, returning a new BitVector. i controls how far to rotate the bits. See also ror!.
Examples
julia> A = BitArray([true, true, false, false, true])
5-element BitArray{1}:
true
true
false
false
true
julia> ror(A,1)
5-element BitArray{1}:
true
true
true
false
false
julia> ror(A,2)
5-element BitArray{1}:
false
true
true
true
false
julia> ror(A,5)
5-element BitArray{1}:
true
true
false
false
true
sourceSparse Vectors and Matrices
Sparse vectors and matrices largely support the same set of operations as their dense counterparts. The following functions are specific to sparse arrays.
Base.SparseArrays.SparseVectorType
SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti}
Vector type for storing sparse vectors.
source
Base.SparseArrays.SparseMatrixCSCType
SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
Matrix type for storing sparse matrices in the Compressed Sparse Column format.
source
Base.SparseArrays.sparseFunction
sparse(A)
Convert an AbstractMatrix A into a sparse matrix.
Example
julia> A = eye(3)
3×3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
julia> sparse(A)
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0
sourcesparse(I, J, V,[ m, n, combine])
Create a sparse matrix S of dimensions m x n such that S[I[k], J[k]] = V[k]. The combine function is used to combine duplicates. If m and n are not specified, they are set to maximum(I) and maximum(J) respectively. If the combine function is not supplied, combine defaults to + unless the elements of V are Booleans in which case combine defaults to |. All elements of I must satisfy 1 <= I[k] <= m, and all elements of J must satisfy 1 <= J[k] <= n. Numerical zeros in (I, J, V) are retained as structural nonzeros; to drop numerical zeros, use dropzeros!.
For additional documentation and an expert driver, see Base.SparseArrays.sparse!.
Example
julia> Is = [1; 2; 3];
julia> Js = [1; 2; 3];
julia> Vs = [1; 2; 3];
julia> sparse(Is, Js, Vs)
3×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:
[1, 1] = 1
[2, 2] = 2
[3, 3] = 3
source
Base.SparseArrays.sparsevecFunction
sparsevec(I, V, [m, combine])
Create a sparse vector S of length m such that S[I[k]] = V[k]. Duplicates are combined using the combine function, which defaults to + if no combine argument is provided, unless the elements of V are Booleans in which case combine defaults to |.
julia> II = [1, 3, 3, 5]; V = [0.1, 0.2, 0.3, 0.2];
julia> sparsevec(II, V)
5-element SparseVector{Float64,Int64} with 3 stored entries:
[1] = 0.1
[3] = 0.5
[5] = 0.2
julia> sparsevec(II, V, 8, -)
8-element SparseVector{Float64,Int64} with 3 stored entries:
[1] = 0.1
[3] = -0.1
[5] = 0.2
julia> sparsevec([1, 3, 1, 2, 2], [true, true, false, false, false])
3-element SparseVector{Bool,Int64} with 3 stored entries:
[1] = true
[2] = false
[3] = true
sourcesparsevec(d::Dict, [m])
Create a sparse vector of length m where the nonzero indices are keys from the dictionary, and the nonzero values are the values from the dictionary.
julia> sparsevec(Dict(1 => 3, 2 => 2))
2-element SparseVector{Int64,Int64} with 2 stored entries:
[1] = 3
[2] = 2
sourcesparsevec(A)
Convert a vector A into a sparse vector of length m.
Example
julia> sparsevec([1.0, 2.0, 0.0, 0.0, 3.0, 0.0])
6-element SparseVector{Float64,Int64} with 3 stored entries:
[1] = 1.0
[2] = 2.0
[5] = 3.0
source
Base.SparseArrays.issparseFunction
issparse(S)
Returns true if S is sparse, and false otherwise.
Base.fullFunction
full(S)
Convert a sparse matrix or vector S into a dense matrix or vector.
Example
julia> A = speye(3)
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0
julia> full(A)
3×3 Array{Float64,2}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
source
Base.SparseArrays.nnzFunction
nnz(A)
Returns the number of stored (filled) elements in a sparse array.
Example
julia> A = speye(3)
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0
julia> nnz(A)
3
source
Base.SparseArrays.spzerosFunction
spzeros([type,]m[,n])
Create a sparse vector of length m or sparse matrix of size m x n. This sparse array will not contain any nonzero values. No storage will be allocated for nonzero values during construction. The type defaults to Float64 if not specified.
Examples
julia> spzeros(3, 3)
3×3 SparseMatrixCSC{Float64,Int64} with 0 stored entries
julia> spzeros(Float32, 4)
4-element SparseVector{Float32,Int64} with 0 stored entries
source
Base.SparseArrays.sponesFunction
spones(S)
Create a sparse array with the same structure as that of S, but with every nonzero element having the value 1.0.
Example
julia> A = sparse([1,2,3,4],[2,4,3,1],[5.,4.,3.,2.])
4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:
[4, 1] = 2.0
[1, 2] = 5.0
[3, 3] = 3.0
[2, 4] = 4.0
julia> spones(A)
4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:
[4, 1] = 1.0
[1, 2] = 1.0
[3, 3] = 1.0
[2, 4] = 1.0
Note the difference from speye.
Base.SparseArrays.speyeMethod
speye([type,]m[,n])
Create a sparse identity matrix of size m x m. When n is supplied, create a sparse identity matrix of size m x n. The type defaults to Float64 if not specified.
sparse(I, m, n) is equivalent to speye(Int, m, n), and sparse(α*I, m, n) can be used to efficiently create a sparse multiple α of the identity matrix.
Base.SparseArrays.speyeMethod
speye(S)
Create a sparse identity matrix with the same size as S.
Example
julia> A = sparse([1,2,3,4],[2,4,3,1],[5.,4.,3.,2.])
4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:
[4, 1] = 2.0
[1, 2] = 5.0
[3, 3] = 3.0
[2, 4] = 4.0
julia> speye(A)
4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0
[4, 4] = 1.0
Note the difference from spones.
speye([type,]m[,n])
Create a sparse identity matrix of size m x m. When n is supplied, create a sparse identity matrix of size m x n. The type defaults to Float64 if not specified.
sparse(I, m, n) is equivalent to speye(Int, m, n), and sparse(α*I, m, n) can be used to efficiently create a sparse multiple α of the identity matrix.
Base.SparseArrays.spdiagmFunction
spdiagm(B, d[, m, n])
Construct a sparse diagonal matrix. B is a tuple of vectors containing the diagonals and d is a tuple containing the positions of the diagonals. In the case the input contains only one diagonal, B can be a vector (instead of a tuple) and d can be the diagonal position (instead of a tuple), defaulting to 0 (diagonal). Optionally, m and n specify the size of the resulting sparse matrix.
Example
julia> spdiagm(([1,2,3,4],[4,3,2,1]),(-1,1))
5×5 SparseMatrixCSC{Int64,Int64} with 8 stored entries:
[2, 1] = 1
[1, 2] = 4
[3, 2] = 2
[2, 3] = 3
[4, 3] = 3
[3, 4] = 2
[5, 4] = 4
[4, 5] = 1
source
Base.SparseArrays.sprandFunction
sprand([rng],[type],m,[n],p::AbstractFloat,[rfn])
Create a random length m sparse vector or m by n sparse matrix, in which the probability of any element being nonzero is independently given by p (and hence the mean density of nonzeros is also exactly p). Nonzero values are sampled from the distribution specified by rfn and have the type type. The uniform distribution is used in case rfn is not specified. The optional rng argument specifies a random number generator, see Random Numbers.
Example
julia> rng = MersenneTwister(1234);
julia> sprand(rng, Bool, 2, 2, 0.5)
2×2 SparseMatrixCSC{Bool,Int64} with 2 stored entries:
[1, 1] = true
[2, 1] = true
julia> sprand(rng, Float64, 3, 0.75)
3-element SparseVector{Float64,Int64} with 1 stored entry:
[3] = 0.298614
source
Base.SparseArrays.sprandnFunction
sprandn([rng], m[,n],p::AbstractFloat)
Create a random sparse vector of length m or sparse matrix of size m by n with the specified (independent) probability p of any entry being nonzero, where nonzero values are sampled from the normal distribution. The optional rng argument specifies a random number generator, see Random Numbers.
Example
julia> rng = MersenneTwister(1234);
julia> sprandn(rng, 2, 2, 0.75)
2×2 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 0.532813
[2, 1] = -0.271735
[2, 2] = 0.502334
source
Base.SparseArrays.nonzerosFunction
nonzeros(A)
Return a vector of the structural nonzero values in sparse array A. This includes zeros that are explicitly stored in the sparse array. The returned vector points directly to the internal nonzero storage of A, and any modifications to the returned vector will mutate A as well. See rowvals and nzrange.
Example
julia> A = speye(3)
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0
julia> nonzeros(A)
3-element Array{Float64,1}:
1.0
1.0
1.0
source
Base.SparseArrays.rowvalsFunction
rowvals(A::SparseMatrixCSC)
Return a vector of the row indices of A. Any modifications to the returned vector will mutate A as well. Providing access to how the row indices are stored internally can be useful in conjunction with iterating over structural nonzero values. See also nonzeros and nzrange.
Example
julia> A = speye(3)
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0
julia> rowvals(A)
3-element Array{Int64,1}:
1
2
3
source
Base.SparseArrays.nzrangeFunction
nzrange(A::SparseMatrixCSC, col::Integer)
Return the range of indices to the structural nonzero values of a sparse matrix column. In conjunction with nonzeros and rowvals, this allows for convenient iterating over a sparse matrix :
A = sparse(I,J,V)
rows = rowvals(A)
vals = nonzeros(A)
m, n = size(A)
for i = 1:n
for j in nzrange(A, i)
row = rows[j]
val = vals[j]
# perform sparse wizardry...
end
end
source
Base.SparseArrays.dropzeros!Method
dropzeros!(A::SparseMatrixCSC, trim::Bool = true)
Removes stored numerical zeros from A, optionally trimming resulting excess space from A.rowval and A.nzval when trim is true.
For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.
Base.SparseArrays.dropzerosMethod
dropzeros(A::SparseMatrixCSC, trim::Bool = true)
Generates a copy of A and removes stored numerical zeros from that copy, optionally trimming excess space from the result's rowval and nzval arrays when trim is true.
For an in-place version and algorithmic information, see dropzeros!.
Example
julia> A = sparse([1, 2, 3], [1, 2, 3], [1.0, 0.0, 1.0])
3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 0.0
[3, 3] = 1.0
julia> dropzeros(A)
3×3 SparseMatrixCSC{Float64,Int64} with 2 stored entries:
[1, 1] = 1.0
[3, 3] = 1.0
source
Base.SparseArrays.dropzeros!Method
dropzeros!(x::SparseVector, trim::Bool = true)
Removes stored numerical zeros from x, optionally trimming resulting excess space from x.nzind and x.nzval when trim is true.
For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.
Base.SparseArrays.dropzerosMethod
dropzeros(x::SparseVector, trim::Bool = true)
Generates a copy of x and removes numerical zeros from that copy, optionally trimming excess space from the result's nzind and nzval arrays when trim is true.
For an in-place version and algorithmic information, see dropzeros!.
Example
julia> A = sparsevec([1, 2, 3], [1.0, 0.0, 1.0])
3-element SparseVector{Float64,Int64} with 3 stored entries:
[1] = 1.0
[2] = 0.0
[3] = 1.0
julia> dropzeros(A)
3-element SparseVector{Float64,Int64} with 2 stored entries:
[1] = 1.0
[3] = 1.0
source
Base.SparseArrays.permuteFunction
permute{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},
q::AbstractVector{<:Integer})
Bilaterally permute A, returning PAQ (A[p,q]). Column-permutation q's length must match A's column count (length(q) == A.n). Row-permutation p's length must match A's row count (length(p) == A.m).
For expert drivers and additional information, see permute!.
Example
julia> A = spdiagm([1, 2, 3, 4], 0, 4, 4) + spdiagm([5, 6, 7], 1, 4, 4)
4×4 SparseMatrixCSC{Int64,Int64} with 7 stored entries:
[1, 1] = 1
[1, 2] = 5
[2, 2] = 2
[2, 3] = 6
[3, 3] = 3
[3, 4] = 7
[4, 4] = 4
julia> permute(A, [4, 3, 2, 1], [1, 2, 3, 4])
4×4 SparseMatrixCSC{Int64,Int64} with 7 stored entries:
[4, 1] = 1
[3, 2] = 2
[4, 2] = 5
[2, 3] = 3
[3, 3] = 6
[1, 4] = 4
[2, 4] = 7
julia> permute(A, [1, 2, 3, 4], [4, 3, 2, 1])
4×4 SparseMatrixCSC{Int64,Int64} with 7 stored entries:
[3, 1] = 7
[4, 1] = 4
[2, 2] = 6
[3, 2] = 3
[1, 3] = 5
[2, 3] = 2
[1, 4] = 1
source
Base.permute!Method
permute!{Tv,Ti}(X::SparseMatrixCSC{Tv,Ti}, A::SparseMatrixCSC{Tv,Ti},
p::AbstractVector{<:Integer}, q::AbstractVector{<:Integer}[, C::SparseMatrixCSC{Tv,Ti}])
Bilaterally permute A, storing result PAQ (A[p,q]) in X. Stores intermediate result (AQ)^T (transpose(A[:,q])) in optional argument C if present. Requires that none of X, A, and, if present, C alias each other; to store result PAQ back into A, use the following method lacking X:
permute!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},
q::AbstractVector{<:Integer}[, C::SparseMatrixCSC{Tv,Ti}[, workcolptr::Vector{Ti}]])
X's dimensions must match those of A (X.m == A.m and X.n == A.n), and X must have enough storage to accommodate all allocated entries in A (length(X.rowval) >= nnz(A) and length(X.nzval) >= nnz(A)). Column-permutation q's length must match A's column count (length(q) == A.n). Row-permutation p's length must match A's row count (length(p) == A.m).
C's dimensions must match those of transpose(A) (C.m == A.n and C.n == A.m), and C must have enough storage to accommodate all allocated entries in A (length(C.rowval) >= nnz(A) and length(C.nzval) >= nnz(A)).
For additional (algorithmic) information, and for versions of these methods that forgo argument checking, see (unexported) parent methods unchecked_noalias_permute! and unchecked_aliasing_permute!.
See also: permute.
© 2009–2016 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/release-0.6/stdlib/arrays/