Mathematics
Mathematical Operators
Base.:-Method
-(x)
Unary minus operator.
source
Base.:+Function
+(x, y...)
Addition operator. x+y+z+... calls this function with all arguments, i.e. +(x, y, z, ...).
Base.:-Method
-(x, y)
Subtraction operator.
source
Base.:*Method
*(x, y...)
Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).
Base.:/Function
/(x, y)
Right division operator: multiplication of x by the inverse of y on the right. Gives floating-point results for integer arguments.
Base.:\Method
\(x, y)
Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for integer arguments.
julia> 3 \ 6
2.0
julia> inv(3) * 6
2.0
julia> A = [1 2; 3 4]; x = [5, 6];
julia> A \ x
2-element Array{Float64,1}:
-4.0
4.5
julia> inv(A) * x
2-element Array{Float64,1}:
-4.0
4.5
source
Base.:^Method
^(x, y)
Exponentiation operator. If x is a matrix, computes matrix exponentiation.
If y is an Int literal (e.g. 2 in x^2 or -3 in x^-3), the Julia code x^y is transformed by the compiler to Base.literal_pow(^, x, Val{y}), to enable compile-time specialization on the value of the exponent. (As a default fallback we have Base.literal_pow(^, x, Val{y}) = ^(x,y), where usually ^ == Base.^ unless ^ has been defined in the calling namespace.)
julia> 3^5
243
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> A^3
2×2 Array{Int64,2}:
37 54
81 118
source
Base.fmaFunction
fma(x, y, z)
Computes x*y+z without rounding the intermediate result x*y. On some systems this is significantly more expensive than x*y+z. fma is used to improve accuracy in certain algorithms. See muladd.
Base.muladdFunction
muladd(x, y, z)
Combined multiply-add, computes x*y+z in an efficient manner. This may on some systems be equivalent to x*y+z, or to fma(x,y,z). muladd is used to improve performance. See fma.
Example
julia> muladd(3, 2, 1) 7 julia> 3 * 2 + 1 7source
Base.divFunction
div(x, y) ÷(x, y)
The quotient from Euclidean division. Computes x/y, truncated to an integer.
julia> 9 ÷ 4 2 julia> -5 ÷ 3 -1source
Base.fldFunction
fld(x, y)
Largest integer less than or equal to x/y.
julia> fld(7.3,5.5) 1.0source
Base.cldFunction
cld(x, y)
Smallest integer larger than or equal to x/y.
julia> cld(5.5,2.2) 3.0source
Base.modFunction
mod(x, y) rem(x, y, RoundDown)
The reduction of x modulo y, or equivalently, the remainder of x after floored division by y, i.e.
x - y*fld(x,y)
if computed without intermediate rounding.
The result will have the same sign as y, and magnitude less than abs(y) (with some exceptions, see note below).
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to y, then it may be rounded to y.
julia> mod(8, 3) 2 julia> mod(9, 3) 0 julia> mod(8.9, 3) 2.9000000000000004 julia> mod(eps(), 3) 2.220446049250313e-16 julia> mod(-eps(), 3) 3.0source
rem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find y::T such that x ≡ y (mod n), where n is the number of integers representable in T, and y is an integer in [typemin(T),typemax(T)]. If T can represent any integer (e.g. T == BigInt), then this operation corresponds to a conversion to T.
julia> 129 % Int8 -127source
Base.remFunction
rem(x, y) %(x, y)
Remainder from Euclidean division, returning a value of the same sign as x, and smaller in magnitude than y. This value is always exact.
julia> x = 15; y = 4; julia> x % y 3 julia> x == div(x, y) * y + rem(x, y) truesource
Base.Math.rem2piFunction
rem2pi(x, r::RoundingMode)
Compute the remainder of x after integer division by 2π, with the quotient rounded according to the rounding mode r. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result than rem(x,2π,r)
if
r == RoundNearest, then the result is in the interval $[-π, π]$. This will generally be the most accurate result.if
r == RoundToZero, then the result is in the interval $[0, 2π]$ ifxis positive,. or $[-2π, 0]$ otherwise.if
r == RoundDown, then the result is in the interval $[0, 2π]$.if
r == RoundUp, then the result is in the interval $[-2π, 0]$.
Example
julia> rem2pi(7pi/4, RoundNearest) -0.7853981633974485 julia> rem2pi(7pi/4, RoundDown) 5.497787143782138source
Base.Math.mod2piFunction
mod2pi(x)
Modulus after division by 2π, returning in the range $[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact 2π, and is therefore not exactly the same as mod(x,2π), which would compute the modulus of x relative to division by the floating-point number 2π.
Example
julia> mod2pi(9*pi/4) 0.7853981633974481source
Base.divremFunction
divrem(x, y)
The quotient and remainder from Euclidean division. Equivalent to (div(x,y), rem(x,y)) or (x÷y, x%y).
julia> divrem(3,7) (0, 3) julia> divrem(7,3) (2, 1)source
Base.fldmodFunction
fldmod(x, y)
The floored quotient and modulus after division. Equivalent to (fld(x,y), mod(x,y)).
Base.fld1Function
fld1(x, y)
Flooring division, returning a value consistent with mod1(x,y)
See also: mod1.
julia> x = 15; y = 4; julia> fld1(x, y) 4 julia> x == fld(x, y) * y + mod(x, y) true julia> x == (fld1(x, y) - 1) * y + mod1(x, y) truesource
Base.mod1Function
mod1(x, y)
Modulus after flooring division, returning a value r such that mod(r, y) == mod(x, y) in the range $(0, y]$ for positive y and in the range $[y,0)$ for negative y.
julia> mod1(4, 2) 2 julia> mod1(4, 3) 1source
Base.fldmod1Function
fldmod1(x, y)
Return (fld1(x,y), mod1(x,y)).
Base.://Function
//(num, den)
Divide two integers or rational numbers, giving a Rational result.
julia> 3 // 5 3//5 julia> (3 // 5) // (2 // 1) 3//10source
Base.rationalizeFunction
rationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point number x as a Rational number with components of the given integer type. The result will differ from x by no more than tol. If T is not provided, it defaults to Int.
julia> rationalize(5.6) 28//5 julia> a = rationalize(BigInt, 10.3) 103//10 julia> typeof(numerator(a)) BigIntsource
Base.numeratorFunction
numerator(x)
Numerator of the rational representation of x.
julia> numerator(2//3) 2 julia> numerator(4) 4source
Base.denominatorFunction
denominator(x)
Denominator of the rational representation of x.
julia> denominator(2//3) 3 julia> denominator(4) 1source
Base.:<<Function
<<(x, n)
Left bit shift operator, x << n. For n >= 0, the result is x shifted left by n bits, filling with 0s. This is equivalent to x * 2^n. For n < 0, this is equivalent to x >> -n.
julia> Int8(3) << 2 12 julia> bits(Int8(3)) "00000011" julia> bits(Int8(12)) "00001100"source
<<(B::BitVector, n) -> BitVector
Left bit shift operator, B << n. For n >= 0, the result is B with elements shifted n positions backwards, filling with false values. If n < 0, elements are shifted forwards. Equivalent to B >> -n.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitArray{1}:
true
false
true
false
false
julia> B << 1
5-element BitArray{1}:
false
true
false
false
false
julia> B << -1
5-element BitArray{1}:
false
true
false
true
false
source
Base.:>>Function
>>(x, n)
Right bit shift operator, x >> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling with 0s if x >= 0, 1s if x < 0, preserving the sign of x. This is equivalent to fld(x, 2^n). For n < 0, this is equivalent to x << -n.
julia> Int8(13) >> 2 3 julia> bits(Int8(13)) "00001101" julia> bits(Int8(3)) "00000011" julia> Int8(-14) >> 2 -4 julia> bits(Int8(-14)) "11110010" julia> bits(Int8(-4)) "11111100"source
>>(B::BitVector, n) -> BitVector
Right bit shift operator, B >> n. For n >= 0, the result is B with elements shifted n positions forward, filling with false values. If n < 0, elements are shifted backwards. Equivalent to B << -n.
Example
julia> B = BitVector([true, false, true, false, false])
5-element BitArray{1}:
true
false
true
false
false
julia> B >> 1
5-element BitArray{1}:
false
true
false
true
false
julia> B >> -1
5-element BitArray{1}:
false
true
false
false
false
source
Base.:>>>Function
>>>(x, n)
Unsigned right bit shift operator, x >>> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling with 0s. For n < 0, this is equivalent to x << -n.
For Unsigned integer types, this is equivalent to >>. For Signed integer types, this is equivalent to signed(unsigned(x) >> n).
julia> Int8(-14) >>> 2 60 julia> bits(Int8(-14)) "11110010" julia> bits(Int8(60)) "00111100"
BigInts are treated as if having infinite size, so no filling is required and this is equivalent to >>.
>>>(B::BitVector, n) -> BitVector
Unsigned right bitshift operator, B >>> n. Equivalent to B >> n. See >> for details and examples.
Base.colonFunction
colon(start, [step], stop)
Called by : syntax for constructing ranges.
julia> colon(1, 2, 5) 1:2:5source
:(start, [step], stop)
Range operator. a:b constructs a range from a to b with a step size of 1, and a:s:b is similar but uses a step size of s. These syntaxes call the function colon. The colon is also used in indexing to select whole dimensions.
Base.rangeFunction
range(start, [step], length)
Construct a range by length, given a starting value and optional step (defaults to 1).
source
Base.OneToType
Base.OneTo(n)
Define an AbstractUnitRange that behaves like 1:n, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
Base.StepRangeLenType
StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1])
A range r where r[i] produces values of type T, parametrized by a reference value, a step, and the length. By default ref is the starting value r[1], but alternatively you can supply it as the value of r[offset] for some other index 1 <= offset <= len. In conjunction with TwicePrecision this can be used to implement ranges that are free of roundoff error.
Base.:==Function
==(x, y)
Generic equality operator, giving a single Bool result. Falls back to ===. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding.
Follows IEEE semantics for floating-point numbers.
Collections should generally implement == by calling == recursively on all contents.
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
source
Base.:!=Function
!=(x, y) ≠(x,y)
Not-equals comparison operator. Always gives the opposite answer as ==. New types should generally not implement this, and rely on the fallback definition !=(x,y) = !(x==y) instead.
julia> 3 != 2 true julia> "foo" ≠ "foo" falsesource
Base.:!==Function
!==(x, y) ≢(x,y)
Equivalent to !(x === y).
julia> a = [1, 2]; b = [1, 2]; julia> a ≢ b true julia> a ≢ a falsesource
Base.:<Function
<(x, y)
Less-than comparison operator. New numeric types should implement this function for two arguments of the new type. Because of the behavior of floating-point NaN values, < implements a partial order. Types with a canonical partial order should implement <, and types with a canonical total order should implement isless.
julia> 'a' < 'b' true julia> "abc" < "abd" true julia> 5 < 3 falsesource
Base.:<=Function
<=(x, y) ≤(x,y)
Less-than-or-equals comparison operator.
julia> 'a' <= 'b' true julia> 7 ≤ 7 ≤ 9 true julia> "abc" ≤ "abc" true julia> 5 <= 3 falsesource
Base.:>Function
>(x, y)
Greater-than comparison operator. Generally, new types should implement < instead of this function, and rely on the fallback definition >(x, y) = y < x.
julia> 'a' > 'b' false julia> 7 > 3 > 1 true julia> "abc" > "abd" false julia> 5 > 3 truesource
Base.:>=Function
>=(x, y) ≥(x,y)
Greater-than-or-equals comparison operator.
julia> 'a' >= 'b' false julia> 7 ≥ 7 ≥ 3 true julia> "abc" ≥ "abc" true julia> 5 >= 3 truesource
Base.cmpFunction
cmp(x,y)
Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y, respectively. Uses the total order implemented by isless. For floating-point numbers, uses < but throws an error for unordered arguments.
julia> cmp(1, 2)
-1
julia> cmp(2, 1)
1
julia> cmp(2+im, 3-im)
ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})
[...]
source
Base.:~Function
~(x)
Bitwise not.
Examples
julia> ~4 -5 julia> ~10 -11 julia> ~true falsesource
Base.:&Function
&(x, y)
Bitwise and.
Examples
julia> 4 & 10 0 julia> 4 & 12 4source
Base.:|Function
|(x, y)
Bitwise or.
Examples
julia> 4 | 10 14 julia> 4 | 1 5source
Base.xorFunction
xor(x, y) ⊻(x, y)
Bitwise exclusive or of x and y. The infix operation a ⊻ b is a synonym for xor(a,b), and ⊻ can be typed by tab-completing \xor or \veebar in the Julia REPL.
julia> [true; true; false] .⊻ [true; false; false]
3-element BitArray{1}:
false
true
false
source
Base.:!Function
!(x)
Boolean not.
julia> !true
false
julia> !false
true
julia> .![true false true]
1×3 BitArray{2}:
false true false
source!f::Function
Predicate function negation: when the argument of ! is a function, it returns a function which computes the boolean negation of f. Example:
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε" "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε" julia> filter(isalpha, str) "εδxyδfxfyε" julia> filter(!isalpha, str) "∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "source
&&Keyword
x && y
Short-circuiting boolean AND.
source
||Keyword
x || y
Short-circuiting boolean OR.
sourceMathematical Functions
Base.isapproxFunction
isapprox(x, y; rtol::Real=sqrt(eps), atol::Real=0, nans::Bool=false, norm::Function)
Inexact equality comparison: true if norm(x-y) <= atol + rtol*max(norm(x), norm(y)). The default atol is zero and the default rtol depends on the types of x and y. The keyword argument nans determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, rtol defaults to sqrt(eps(typeof(real(x-y)))). This corresponds to requiring equality of about half of the significand digits. For other types, rtol defaults to zero.
x and y may also be arrays of numbers, in which case norm defaults to vecnorm but may be changed by passing a norm::Function keyword argument. (For numbers, norm is the same thing as abs.) When x and y are arrays, if norm(x-y) is not finite (i.e. ±Inf or NaN), the comparison falls back to checking whether all elements of x and y are approximately equal component-wise.
The binary operator ≈ is equivalent to isapprox with the default arguments, and x ≉ y is equivalent to !isapprox(x,y).
julia> 0.1 ≈ (0.1 - 1e-10) true julia> isapprox(10, 11; atol = 2) true julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) truesource
Base.sinFunction
sin(x)
Compute sine of x, where x is in radians.
Base.cosFunction
cos(x)
Compute cosine of x, where x is in radians.
Base.tanFunction
tan(x)
Compute tangent of x, where x is in radians.
Base.Math.sindFunction
sind(x)
Compute sine of x, where x is in degrees.
Base.Math.cosdFunction
cosd(x)
Compute cosine of x, where x is in degrees.
Base.Math.tandFunction
tand(x)
Compute tangent of x, where x is in degrees.
Base.Math.sinpiFunction
sinpi(x)
Compute $\sin(\pi x)$ more accurately than sin(pi*x), especially for large x.
Base.Math.cospiFunction
cospi(x)
Compute $\cos(\pi x)$ more accurately than cos(pi*x), especially for large x.
Base.sinhFunction
sinh(x)
Compute hyperbolic sine of x.
Base.coshFunction
cosh(x)
Compute hyperbolic cosine of x.
Base.tanhFunction
tanh(x)
Compute hyperbolic tangent of x.
Base.asinFunction
asin(x)
Compute the inverse sine of x, where the output is in radians.
Base.acosFunction
acos(x)
Compute the inverse cosine of x, where the output is in radians
Base.atanFunction
atan(x)
Compute the inverse tangent of x, where the output is in radians.
Base.Math.atan2Function
atan2(y, x)
Compute the inverse tangent of y/x, using the signs of both x and y to determine the quadrant of the return value.
Base.Math.asindFunction
asind(x)
Compute the inverse sine of x, where the output is in degrees.
Base.Math.acosdFunction
acosd(x)
Compute the inverse cosine of x, where the output is in degrees.
Base.Math.atandFunction
atand(x)
Compute the inverse tangent of x, where the output is in degrees.
Base.Math.secFunction
sec(x)
Compute the secant of x, where x is in radians.
Base.Math.cscFunction
csc(x)
Compute the cosecant of x, where x is in radians.
Base.Math.cotFunction
cot(x)
Compute the cotangent of x, where x is in radians.
Base.Math.secdFunction
secd(x)
Compute the secant of x, where x is in degrees.
Base.Math.cscdFunction
cscd(x)
Compute the cosecant of x, where x is in degrees.
Base.Math.cotdFunction
cotd(x)
Compute the cotangent of x, where x is in degrees.
Base.Math.asecFunction
asec(x)
Compute the inverse secant of x, where the output is in radians.
Base.Math.acscFunction
acsc(x)
Compute the inverse cosecant of x, where the output is in radians.
Base.Math.acotFunction
acot(x)
Compute the inverse cotangent of x, where the output is in radians.
Base.Math.asecdFunction
asecd(x)
Compute the inverse secant of x, where the output is in degrees.
Base.Math.acscdFunction
acscd(x)
Compute the inverse cosecant of x, where the output is in degrees.
Base.Math.acotdFunction
acotd(x)
Compute the inverse cotangent of x, where the output is in degrees.
Base.Math.sechFunction
sech(x)
Compute the hyperbolic secant of x
Base.Math.cschFunction
csch(x)
Compute the hyperbolic cosecant of x.
Base.Math.cothFunction
coth(x)
Compute the hyperbolic cotangent of x.
Base.asinhFunction
asinh(x)
Compute the inverse hyperbolic sine of x.
Base.acoshFunction
acosh(x)
Compute the inverse hyperbolic cosine of x.
Base.atanhFunction
atanh(x)
Compute the inverse hyperbolic tangent of x.
Base.Math.asechFunction
asech(x)
Compute the inverse hyperbolic secant of x.
Base.Math.acschFunction
acsch(x)
Compute the inverse hyperbolic cosecant of x.
Base.Math.acothFunction
acoth(x)
Compute the inverse hyperbolic cotangent of x.
Base.Math.sincFunction
sinc(x)
Compute $\sin(\pi x) / (\pi x)$ if $x \neq 0$, and $1$ if $x = 0$.
source
Base.Math.coscFunction
cosc(x)
Compute $\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if $x \neq 0$, and $0$ if $x = 0$. This is the derivative of sinc(x).
Base.Math.deg2radFunction
deg2rad(x)
Convert x from degrees to radians.
julia> deg2rad(90) 1.5707963267948966source
Base.Math.rad2degFunction
rad2deg(x)
Convert x from radians to degrees.
julia> rad2deg(pi) 180.0source
Base.Math.hypotFunction
hypot(x, y)
Compute the hypotenuse $\sqrt{x^2+y^2}$ avoiding overflow and underflow.
Examples
julia> a = 10^10; julia> hypot(a, a) 1.4142135623730951e10 julia> √(a^2 + a^2) # a^2 overflows ERROR: DomainError: sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)). Stacktrace: [1] sqrt(::Int64) at ./math.jl:434source
hypot(x...)
Compute the hypotenuse $\sqrt{\sum x_i^2}$ avoiding overflow and underflow.
source
Base.logMethod
log(x)
Compute the natural logarithm of x. Throws DomainError for negative Real arguments. Use complex negative arguments to obtain complex results.
There is an experimental variant in the Base.Math.JuliaLibm module, which is typically faster and more accurate.
Base.logMethod
log(b,x)
Compute the base b logarithm of x. Throws DomainError for negative Real arguments.
julia> log(4,8) 1.5 julia> log(4,2) 0.5
Base.log2Function
log2(x)
Compute the logarithm of x to base 2. Throws DomainError for negative Real arguments.
Example
julia> log2(4) 2.0 julia> log2(10) 3.321928094887362source
Base.log10Function
log10(x)
Compute the logarithm of x to base 10. Throws DomainError for negative Real arguments.
Example
julia> log10(100) 2.0 julia> log10(2) 0.3010299956639812source
Base.log1pFunction
log1p(x)
Accurate natural logarithm of 1+x. Throws DomainError for Real arguments less than -1.
There is an experimental variant in the Base.Math.JuliaLibm module, which is typically faster and more accurate.
Examples
julia> log1p(-0.5) -0.6931471805599453 julia> log1p(0) 0.0source
Base.Math.frexpFunction
frexp(val)
Return (x,exp) such that x has a magnitude in the interval $[1/2, 1)$ or 0, and val is equal to $x \times 2^{exp}$.
Base.expFunction
exp(x)
Compute the natural base exponential of x, in other words $e^x$.
Base.exp2Function
exp2(x)
Compute $2^x$.
julia> exp2(5) 32.0source
Base.exp10Function
exp10(x)
Compute $10^x$.
Examples
julia> exp10(2) 100.0 julia> exp10(0.2) 1.5848931924611136source
Base.Math.ldexpFunction
ldexp(x, n)
Compute $x \times 2^n$.
Example
julia> ldexp(5., 2) 20.0source
Base.Math.modfFunction
modf(x)
Return a tuple (fpart,ipart) of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Example
julia> modf(3.5) (0.5, 3.0)source
Base.expm1Function
expm1(x)
Accurately compute $e^x-1$.
source
Base.roundMethod
round([T,] x, [digits, [base]], [r::RoundingMode])
Rounds x to an integer value according to the provided RoundingMode, returning a value of the same type as x. When not specifying a rounding mode the global mode will be used (see rounding), which by default is round to the nearest integer (RoundNearest mode), with ties (fractional values of 0.5) being rounded to the nearest even integer.
julia> round(1.7) 2.0 julia> round(1.5) 2.0 julia> round(2.5) 2.0
The optional RoundingMode argument will change how the number gets rounded.
round(T, x, [r::RoundingMode]) converts the result to type T, throwing an InexactError if the value is not representable.
round(x, digits) rounds to the specified number of digits after the decimal place (or before if negative). round(x, digits, base) rounds using a base other than 10.
julia> round(pi, 2) 3.14 julia> round(pi, 3, 2) 3.125
Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, the Float64 value represented by 1.15 is actually less than 1.15, yet will be rounded to 1.2.
julia> x = 1.15 1.15 julia> @sprintf "%.20f" x "1.14999999999999991118" julia> x < 115//100 true julia> round(x, 1) 1.2
Base.Rounding.RoundingModeType
RoundingMode
A type used for controlling the rounding mode of floating point operations (via rounding/setrounding functions), or as optional arguments for rounding to the nearest integer (via the round function).
Currently supported rounding modes are:
RoundNearest(default)RoundFromZero(BigFloatonly)
Base.Rounding.RoundNearestConstant
RoundNearest
The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
source
Base.Rounding.RoundNearestTiesAwayConstant
RoundNearestTiesAway
Rounds to nearest integer, with ties rounded away from zero (C/C++ round behaviour).
Base.Rounding.RoundNearestTiesUpConstant
RoundNearestTiesUp
Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round behaviour).
Base.Rounding.RoundToZeroConstant
RoundToZero
round using this rounding mode is an alias for trunc.
Base.Rounding.RoundUpConstant
RoundUp
round using this rounding mode is an alias for ceil.
Base.Rounding.RoundDownConstant
RoundDown
round using this rounding mode is an alias for floor.
Base.roundMethod
round(z, RoundingModeReal, RoundingModeImaginary)
Returns the nearest integral value of the same type as the complex-valued z to z, breaking ties using the specified RoundingModes. The first RoundingMode is used for rounding the real components while the second is used for rounding the imaginary components.
Base.ceilFunction
ceil([T,] x, [digits, [base]])
ceil(x) returns the nearest integral value of the same type as x that is greater than or equal to x.
ceil(T, x) converts the result to type T, throwing an InexactError if the value is not representable.
digits and base work as for round.
Base.floorFunction
floor([T,] x, [digits, [base]])
floor(x) returns the nearest integral value of the same type as x that is less than or equal to x.
floor(T, x) converts the result to type T, throwing an InexactError if the value is not representable.
digits and base work as for round.
Base.truncFunction
trunc([T,] x, [digits, [base]])
trunc(x) returns the nearest integral value of the same type as x whose absolute value is less than or equal to x.
trunc(T, x) converts the result to type T, throwing an InexactError if the value is not representable.
digits and base work as for round.
Base.unsafe_truncFunction
unsafe_trunc(T, x)
unsafe_trunc(T, x) returns the nearest integral value of type T whose absolute value is less than or equal to x. If the value is not representable by T, an arbitrary value will be returned.
Base.signifFunction
signif(x, digits, [base])
Rounds (in the sense of round) x so that there are digits significant digits, under a base base representation, default 10. E.g., signif(123.456, 2) is 120.0, and signif(357.913, 4, 2) is 352.0.
Base.minFunction
min(x, y, ...)
Return the minimum of the arguments. See also the minimum function to take the minimum element from a collection.
julia> min(2, 5, 1) 1source
Base.maxFunction
max(x, y, ...)
Return the maximum of the arguments. See also the maximum function to take the maximum element from a collection.
julia> max(2, 5, 1) 5source
Base.minmaxFunction
minmax(x, y)
Return (min(x,y), max(x,y)). See also: extrema that returns (minimum(x), maximum(x)).
julia> minmax('c','b')
('b', 'c')
source
Base.Math.clampFunction
clamp(x, lo, hi)
Return x if lo <= x <= hi. If x < lo, return lo. If x > hi, return hi. Arguments are promoted to a common type.
julia> clamp.([pi, 1.0, big(10.)], 2., 9.)
3-element Array{BigFloat,1}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.000000000000000000000000000000000000000000000000000000000000000000000000000000
9.000000000000000000000000000000000000000000000000000000000000000000000000000000
source
Base.Math.clamp!Function
clamp!(array::AbstractArray, lo, hi)
Restrict values in array to the specified range, in-place. See also clamp.
Base.absFunction
abs(x)
The absolute value of x.
When abs is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when abs is applied to the minimum representable value of a signed integer. That is, when x == typemin(typeof(x)), abs(x) == x < 0, not -x as might be expected.
julia> abs(-3) 3 julia> abs(1 + im) 1.4142135623730951 julia> abs(typemin(Int64)) -9223372036854775808source
Base.Checked.checked_absFunction
Base.checked_abs(x)
Calculates abs(x), checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int) cannot represent abs(typemin(Int)), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_negFunction
Base.checked_neg(x)
Calculates -x, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int) cannot represent -typemin(Int), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_addFunction
Base.checked_add(x, y)
Calculates x+y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_subFunction
Base.checked_sub(x, y)
Calculates x-y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_mulFunction
Base.checked_mul(x, y)
Calculates x*y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_divFunction
Base.checked_div(x, y)
Calculates div(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_remFunction
Base.checked_rem(x, y)
Calculates x%y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_fldFunction
Base.checked_fld(x, y)
Calculates fld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_modFunction
Base.checked_mod(x, y)
Calculates mod(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_cldFunction
Base.checked_cld(x, y)
Calculates cld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.add_with_overflowFunction
Base.add_with_overflow(x, y) -> (r, f)
Calculates r = x+y, with the flag f indicating whether overflow has occurred.
Base.Checked.sub_with_overflowFunction
Base.sub_with_overflow(x, y) -> (r, f)
Calculates r = x-y, with the flag f indicating whether overflow has occurred.
Base.Checked.mul_with_overflowFunction
Base.mul_with_overflow(x, y) -> (r, f)
Calculates r = x*y, with the flag f indicating whether overflow has occurred.
Base.abs2Function
abs2(x)
Squared absolute value of x.
julia> abs2(-3) 9source
Base.copysignFunction
copysign(x, y) -> z
Return z which has the magnitude of x and the same sign as y.
Examples
julia> copysign(1, -2) -1 julia> copysign(-1, 2) 1source
Base.signFunction
sign(x)
Return zero if x==0 and $x/|x|$ otherwise (i.e., ±1 for real x).
Base.signbitFunction
signbit(x)
Returns true if the value of the sign of x is negative, otherwise false.
Examples
julia> signbit(-4) true julia> signbit(5) false julia> signbit(5.5) false julia> signbit(-4.1) truesource
Base.flipsignFunction
flipsign(x, y)
Return x with its sign flipped if y is negative. For example abs(x) = flipsign(x,x).
julia> flipsign(5, 3) 5 julia> flipsign(5, -3) -5source
Base.sqrtFunction
sqrt(x)
Return $\sqrt{x}$. Throws DomainError for negative Real arguments. Use complex negative arguments instead. The prefix operator √ is equivalent to sqrt.
Base.isqrtFunction
isqrt(n::Integer)
Integer square root: the largest integer m such that m*m <= n.
julia> isqrt(5) 2source
Base.Math.cbrtFunction
cbrt(x::Real)
Return the cube root of x, i.e. $x^{1/3}$. Negative values are accepted (returning the negative real root when $x < 0$).
The prefix operator ∛ is equivalent to cbrt.
julia> cbrt(big(27)) 3.000000000000000000000000000000000000000000000000000000000000000000000000000000source
Base.realMethod
real(z)
Return the real part of the complex number z.
julia> real(1 + 3im) 1source
Base.imagFunction
imag(z)
Return the imaginary part of the complex number z.
julia> imag(1 + 3im) 3source
Base.reimFunction
reim(z)
Return both the real and imaginary parts of the complex number z.
julia> reim(1 + 3im) (1, 3)source
Base.conjFunction
conj(z)
Compute the complex conjugate of a complex number z.
julia> conj(1 + 3im) 1 - 3imsource
conj(v::RowVector)
Returns a ConjArray lazy view of the input, where each element is conjugated.
Example
julia> v = [1+im, 1-im].'
1×2 RowVector{Complex{Int64},Array{Complex{Int64},1}}:
1+1im 1-1im
julia> conj(v)
1×2 RowVector{Complex{Int64},ConjArray{Complex{Int64},1,Array{Complex{Int64},1}}}:
1-1im 1+1im
source
Base.angleFunction
angle(z)
Compute the phase angle in radians of a complex number z.
Base.cisFunction
cis(z)
Return $\exp(iz)$.
source
Base.binomialFunction
binomial(n, k)
Number of ways to choose k out of n items.
Example
julia> binomial(5, 3) 10 julia> factorial(5) ÷ (factorial(5-3) * factorial(3)) 10source
Base.factorialFunction
factorial(n)
Factorial of n. If n is an Integer, the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow if n is not small, but you can use factorial(big(n)) to compute the result exactly in arbitrary precision. If n is not an Integer, factorial(n) is equivalent to gamma(n+1).
julia> factorial(6) 720 julia> factorial(21) ERROR: OverflowError() [...] julia> factorial(21.0) 5.109094217170944e19 julia> factorial(big(21)) 51090942171709440000source
Base.gcdFunction
gcd(x,y)
Greatest common (positive) divisor (or zero if x and y are both zero).
Examples
julia> gcd(6,9) 3 julia> gcd(6,-9) 3source
Base.lcmFunction
lcm(x,y)
Least common (non-negative) multiple.
Examples
julia> lcm(2,3) 6 julia> lcm(-2,3) 6source
Base.gcdxFunction
gcdx(x,y)
Computes the greatest common (positive) divisor of x and y and their Bézout coefficients, i.e. the integer coefficients u and v that satisfy $ux+vy = d = gcd(x,y)$. $gcdx(x,y)$ returns $(d,u,v)$.
Examples
julia> gcdx(12, 42) (6, -3, 1) julia> gcdx(240, 46) (2, -9, 47)
Bézout coefficients are not uniquely defined. gcdx returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficients u and v are minimal in the sense that $|u| < |y/d|$ and $|v| < |x/d|$. Furthermore, the signs of u and v are chosen so that d is positive. For unsigned integers, the coefficients u and v might be near their typemax, and the identity then holds only via the unsigned integers' modulo arithmetic.
Base.ispow2Function
ispow2(n::Integer) -> Bool
Test whether n is a power of two.
Examples
julia> ispow2(4) true julia> ispow2(5) falsesource
Base.nextpow2Function
nextpow2(n::Integer)
The smallest power of two not less than n. Returns 0 for n==0, and returns -nextpow2(-n) for negative arguments.
Examples
julia> nextpow2(16) 16 julia> nextpow2(17) 32source
Base.prevpow2Function
prevpow2(n::Integer)
The largest power of two not greater than n. Returns 0 for n==0, and returns -prevpow2(-n) for negative arguments.
Examples
julia> prevpow2(5) 4 julia> prevpow2(0) 0source
Base.nextpowFunction
nextpow(a, x)
The smallest a^n not less than x, where n is a non-negative integer. a must be greater than 1, and x must be greater than 0.
Examples
julia> nextpow(2, 7) 8 julia> nextpow(2, 9) 16 julia> nextpow(5, 20) 25 julia> nextpow(4, 16) 16
See also prevpow.
Base.prevpowFunction
prevpow(a, x)
The largest a^n not greater than x, where n is a non-negative integer. a must be greater than 1, and x must not be less than 1.
Examples
julia> prevpow(2, 7) 4 julia> prevpow(2, 9) 8 julia> prevpow(5, 20) 5 julia> prevpow(4, 16) 16
See also nextpow.
Base.nextprodFunction
nextprod([k_1, k_2,...], n)
Next integer greater than or equal to n that can be written as $\prod k_i^{p_i}$ for integers $p_1$, $p_2$, etc.
Example
julia> nextprod([2, 3], 105) 108 julia> 2^2 * 3^3 108source
Base.invmodFunction
invmod(x,m)
Take the inverse of x modulo m: y such that $x y = 1 \pmod m$, with $div(x,y) = 0$. This is undefined for $m = 0$, or if $gcd(x,m) \neq 1$.
Examples
julia> invmod(2,5) 3 julia> invmod(2,3) 2 julia> invmod(5,6) 5source
Base.powermodFunction
powermod(x::Integer, p::Integer, m)
Compute $x^p \pmod m$.
Examples
julia> powermod(2, 6, 5) 4 julia> mod(2^6, 5) 4 julia> powermod(5, 2, 20) 5 julia> powermod(5, 2, 19) 6 julia> powermod(5, 3, 19) 11source
Base.Math.gammaFunction
gamma(x)
Compute the gamma function of x.
Base.Math.lgammaFunction
lgamma(x)
Compute the logarithm of the absolute value of gamma for Real x, while for Complex x compute the principal branch cut of the logarithm of gamma(x) (defined for negative real(x) by analytic continuation from positive real(x)).
Base.Math.lfactFunction
lfact(x)
Compute the logarithmic factorial of a nonnegative integer x. Equivalent to lgamma of x + 1, but lgamma extends this function to non-integer x.
Base.Math.betaFunction
beta(x, y)
Euler integral of the first kind $\operatorname{B}(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$.
source
Base.Math.lbetaFunction
lbeta(x, y)
Natural logarithm of the absolute value of the beta function $\log(|\operatorname{B}(x,y)|)$.
Base.ndigitsFunction
ndigits(n::Integer, b::Integer=10)
Compute the number of digits in integer n written in base b. The base b must not be in [-1, 0, 1].
Examples
julia> ndigits(12345) 5 julia> ndigits(1022, 16) 3 julia> base(16, 1022) "3fe"source
Base.widemulFunction
widemul(x, y)
Multiply x and y, giving the result as a larger type.
julia> widemul(Float32(3.), 4.) 1.200000000000000000000000000000000000000000000000000000000000000000000000000000e+01source
Base.Math.@evalpolyMacro
@evalpoly(z, c...)
Evaluate the polynomial $\sum_k c[k] z^{k-1}$ for the coefficients c[1], c[2], ...; that is, the coefficients are given in ascending order by power of z. This macro expands to efficient inline code that uses either Horner's method or, for complex z, a more efficient Goertzel-like algorithm.
julia> @evalpoly(3, 1, 0, 1) 10 julia> @evalpoly(2, 1, 0, 1) 5 julia> @evalpoly(2, 1, 1, 1) 7source
Statistics
Base.meanFunction
mean(f::Function, v)
Apply the function f to each element of v and take the mean.
julia> mean(√, [1, 2, 3]) 1.3820881233139908 julia> mean([√1, √2, √3]) 1.3820881233139908source
mean(v[, region])
Compute the mean of whole array v, or optionally along the dimensions in region.
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended.
Base.mean!Function
mean!(r, v)
Compute the mean of v over the singleton dimensions of r, and write results to r.
Base.stdFunction
std(v[, region]; corrected::Bool=true, mean=nothing)
Compute the sample standard deviation of a vector or array v, optionally along dimensions in region. The algorithm returns an estimator of the generative distribution's standard deviation under the assumption that each entry of v is an IID drawn from that generative distribution. This computation is equivalent to calculating sqrt(sum((v - mean(v)).^2) / (length(v) - 1)). A pre-computed mean may be provided. If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = length(x).
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended.
Base.stdmFunction
stdm(v, m::Number; corrected::Bool=true)
Compute the sample standard deviation of a vector v with known mean m. If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = length(x).
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended.
Base.varFunction
var(v[, region]; corrected::Bool=true, mean=nothing)
Compute the sample variance of a vector or array v, optionally along dimensions in region. The algorithm will return an estimator of the generative distribution's variance under the assumption that each entry of v is an IID drawn from that generative distribution. This computation is equivalent to calculating sum(abs2, v - mean(v)) / (length(v) - 1). If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = length(x). The mean mean over the region may be provided.
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended.
Base.varmFunction
varm(v, m[, region]; corrected::Bool=true)
Compute the sample variance of a collection v with known mean(s) m, optionally over region. m may contain means for each dimension of v. If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = length(x).
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended.
Base.middleFunction
middle(x)
Compute the middle of a scalar value, which is equivalent to x itself, but of the type of middle(x, x) for consistency.
middle(x, y)
Compute the middle of two reals x and y, which is equivalent in both value and type to computing their mean ((x + y) / 2).
middle(range)
Compute the middle of a range, which consists of computing the mean of its extrema. Since a range is sorted, the mean is performed with the first and last element.
julia> middle(1:10) 5.5source
middle(a)
Compute the middle of an array a, which consists of finding its extrema and then computing their mean.
julia> a = [1,2,3.6,10.9]
4-element Array{Float64,1}:
1.0
2.0
3.6
10.9
julia> middle(a)
5.95
source
Base.medianFunction
median(v[, region])
Compute the median of an entire array v, or, optionally, along the dimensions in region. For an even number of elements no exact median element exists, so the result is equivalent to calculating mean of two median elements.
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended.
Base.median!Function
median!(v)
Like median, but may overwrite the input vector.
Base.quantileFunction
quantile(v, p; sorted=false)
Compute the quantile(s) of a vector v at a specified probability or vector p. The keyword argument sorted indicates whether v can be assumed to be sorted.
The p should be on the interval [0,1], and v should not have any NaN values.
Quantiles are computed via linear interpolation between the points ((k-1)/(n-1), v[k]), for k = 1:n where n = length(v). This corresponds to Definition 7 of Hyndman and Fan (1996), and is the same as the R default.
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended. quantile will throw an ArgumentError in the presence of NaN values in the data array.
Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", The American Statistician, Vol. 50, No. 4, pp. 361-365
Base.quantile!Function
quantile!([q, ] v, p; sorted=false)
Compute the quantile(s) of a vector v at the probabilities p, with optional output into array q (if not provided, a new output array is created). The keyword argument sorted indicates whether v can be assumed to be sorted; if false (the default), then the elements of v may be partially sorted.
The elements of p should be on the interval [0,1], and v should not have any NaN values.
Quantiles are computed via linear interpolation between the points ((k-1)/(n-1), v[k]), for k = 1:n where n = length(v). This corresponds to Definition 7 of Hyndman and Fan (1996), and is the same as the R default.
Julia does not ignore NaN values in the computation. For applications requiring the handling of missing data, the DataArrays.jl package is recommended. quantile! will throw an ArgumentError in the presence of NaN values in the data array.
Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages", The American Statistician, Vol. 50, No. 4, pp. 361-365
Base.covFunction
cov(x[, corrected=true])
Compute the variance of the vector x. If corrected is true (the default) then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = length(x).
cov(X[, vardim=1, corrected=true])
Compute the covariance matrix of the matrix X along the dimension vardim. If corrected is true (the default) then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = size(X, vardim).
cov(x, y[, corrected=true])
Compute the covariance between the vectors x and y. If corrected is true (the default), computes $\frac{1}{n-1}\sum_{i=1}^n (x_i-\bar x) (y_i-\bar y)^*$ where $*$ denotes the complex conjugate and n = length(x) = length(y). If corrected is false, computes $rac{1}{n}sum_{i=1}^n (x_i-\bar x) (y_i-\bar y)^*$.
cov(X, Y[, vardim=1, corrected=true])
Compute the covariance between the vectors or matrices X and Y along the dimension vardim. If corrected is true (the default) then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = size(X, vardim) = size(Y, vardim).
Base.corFunction
cor(x)
Return the number one.
sourcecor(X[, vardim=1])
Compute the Pearson correlation matrix of the matrix X along the dimension vardim.
cor(x, y)
Compute the Pearson correlation between the vectors x and y.
cor(X, Y[, vardim=1])
Compute the Pearson correlation between the vectors or matrices X and Y along the dimension vardim.
Signal Processing
Fast Fourier transform (FFT) functions in Julia are implemented by calling functions from FFTW.
Base.DFT.fftFunction
fft(A [, dims])
Performs a multidimensional FFT of the array A. The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small primes; see nextprod(). See also plan_fft() for even greater efficiency.
A one-dimensional FFT computes the one-dimensional discrete Fourier transform (DFT) as defined by
\[\operatorname{DFT}(A)[k] = \sum_{n=1}^{\operatorname{length}(A)} \exp\left(-i\frac{2\pi (n-1)(k-1)}{\operatorname{length}(A)} \right) A[n].\]A multidimensional FFT simply performs this operation along each transformed dimension of A.
Julia starts FFTW up with 1 thread by default. Higher performance is usually possible by increasing number of threads. Use
FFTW.set_num_threads(Sys.CPU_CORES)to use as many threads as cores on your system.This performs a multidimensional FFT by default. FFT libraries in other languages such as Python and Octave perform a one-dimensional FFT along the first non-singleton dimension of the array. This is worth noting while performing comparisons. For more details, refer to the Noteworthy Differences from other Languages section of the manual.
Base.DFT.fft!Function
fft!(A [, dims])
Same as fft, but operates in-place on A, which must be an array of complex floating-point numbers.
Base.DFT.ifftFunction
ifft(A [, dims])
Multidimensional inverse FFT.
A one-dimensional inverse FFT computes
\[\operatorname{IDFT}(A)[k] = \frac{1}{\operatorname{length}(A)} \sum_{n=1}^{\operatorname{length}(A)} \exp\left(+i\frac{2\pi (n-1)(k-1)} {\operatorname{length}(A)} \right) A[n].\]A multidimensional inverse FFT simply performs this operation along each transformed dimension of A.
Base.DFT.ifft!Function
ifft!(A [, dims])
Same as ifft, but operates in-place on A.
Base.DFT.bfftFunction
bfft(A [, dims])
Similar to ifft, but computes an unnormalized inverse (backward) transform, which must be divided by the product of the sizes of the transformed dimensions in order to obtain the inverse. (This is slightly more efficient than ifft because it omits a scaling step, which in some applications can be combined with other computational steps elsewhere.)
Base.DFT.bfft!Function
bfft!(A [, dims])
Same as bfft, but operates in-place on A.
Base.DFT.plan_fftFunction
plan_fft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized FFT along given dimensions (dims) of arrays matching the shape and type of A. (The first two arguments have the same meaning as for fft.) Returns an object P which represents the linear operator computed by the FFT, and which contains all of the information needed to compute fft(A, dims) quickly.
To apply P to an array A, use P * A; in general, the syntax for applying plans is much like that of matrices. (A plan can only be applied to arrays of the same size as the A for which the plan was created.) You can also apply a plan with a preallocated output array  by calling A_mul_B!(Â, plan, A). (For A_mul_B!, however, the input array A must be a complex floating-point array like the output Â.) You can compute the inverse-transform plan by inv(P) and apply the inverse plan with P \  (the inverse plan is cached and reused for subsequent calls to inv or \), and apply the inverse plan to a pre-allocated output array A with A_ldiv_B!(A, P, Â).
The flags argument is a bitwise-or of FFTW planner flags, defaulting to FFTW.ESTIMATE. e.g. passing FFTW.MEASURE or FFTW.PATIENT will instead spend several seconds (or more) benchmarking different possible FFT algorithms and picking the fastest one; see the FFTW manual for more information on planner flags. The optional timelimit argument specifies a rough upper bound on the allowed planning time, in seconds. Passing FFTW.MEASURE or FFTW.PATIENT may cause the input array A to be overwritten with zeros during plan creation.
plan_fft! is the same as plan_fft but creates a plan that operates in-place on its argument (which must be an array of complex floating-point numbers). plan_ifft and so on are similar but produce plans that perform the equivalent of the inverse transforms ifft and so on.
Base.DFT.plan_ifftFunction
plan_ifft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as plan_fft, but produces a plan that performs inverse transforms ifft.
Base.DFT.plan_bfftFunction
plan_bfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as plan_fft, but produces a plan that performs an unnormalized backwards transform bfft.
Base.DFT.plan_fft!Function
plan_fft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as plan_fft, but operates in-place on A.
Base.DFT.plan_ifft!Function
plan_ifft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as plan_ifft, but operates in-place on A.
Base.DFT.plan_bfft!Function
plan_bfft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Same as plan_bfft, but operates in-place on A.
Base.DFT.rfftFunction
rfft(A [, dims])
Multidimensional FFT of a real array A, exploiting the fact that the transform has conjugate symmetry in order to save roughly half the computational time and storage costs compared with fft. If A has size (n_1, ..., n_d), the result has size (div(n_1,2)+1, ..., n_d).
The optional dims argument specifies an iterable subset of one or more dimensions of A to transform, similar to fft. Instead of (roughly) halving the first dimension of A in the result, the dims[1] dimension is (roughly) halved in the same way.
Base.DFT.irfftFunction
irfft(A, d [, dims])
Inverse of rfft: for a complex array A, gives the corresponding real array whose FFT yields A in the first half. As for rfft, dims is an optional subset of dimensions to transform, defaulting to 1:ndims(A).
d is the length of the transformed real array along the dims[1] dimension, which must satisfy div(d,2)+1 == size(A,dims[1]). (This parameter cannot be inferred from size(A) since both 2*size(A,dims[1])-2 as well as 2*size(A,dims[1])-1 are valid sizes for the transformed real array.)
Base.DFT.brfftFunction
brfft(A, d [, dims])
Similar to irfft but computes an unnormalized inverse transform (similar to bfft), which must be divided by the product of the sizes of the transformed dimensions (of the real output array) in order to obtain the inverse transform.
Base.DFT.plan_rfftFunction
plan_rfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized real-input FFT, similar to plan_fft except for rfft instead of fft. The first two arguments, and the size of the transformed result, are the same as for rfft.
Base.DFT.plan_brfftFunction
plan_brfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized real-input unnormalized transform, similar to plan_rfft except for brfft instead of rfft. The first two arguments and the size of the transformed result, are the same as for brfft.
Base.DFT.plan_irfftFunction
plan_irfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)
Pre-plan an optimized inverse real-input FFT, similar to plan_rfft except for irfft and brfft, respectively. The first three arguments have the same meaning as for irfft.
Base.DFT.FFTW.dctFunction
dct(A [, dims])
Performs a multidimensional type-II discrete cosine transform (DCT) of the array A, using the unitary normalization of the DCT. The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small primes; see nextprod. See also plan_dct for even greater efficiency.
Base.DFT.FFTW.dct!Function
dct!(A [, dims])
Same as dct!, except that it operates in-place on A, which must be an array of real or complex floating-point values.
Base.DFT.FFTW.idctFunction
idct(A [, dims])
Computes the multidimensional inverse discrete cosine transform (DCT) of the array A (technically, a type-III DCT with the unitary normalization). The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small primes; see nextprod. See also plan_idct for even greater efficiency.
Base.DFT.FFTW.idct!Function
idct!(A [, dims])
Same as idct!, but operates in-place on A.
Base.DFT.FFTW.plan_dctFunction
plan_dct(A [, dims [, flags [, timelimit]]])
Pre-plan an optimized discrete cosine transform (DCT), similar to plan_fft except producing a function that computes dct. The first two arguments have the same meaning as for dct.
Base.DFT.FFTW.plan_dct!Function
plan_dct!(A [, dims [, flags [, timelimit]]])
Same as plan_dct, but operates in-place on A.
Base.DFT.FFTW.plan_idctFunction
plan_idct(A [, dims [, flags [, timelimit]]])
Pre-plan an optimized inverse discrete cosine transform (DCT), similar to plan_fft except producing a function that computes idct. The first two arguments have the same meaning as for idct.
Base.DFT.FFTW.plan_idct!Function
plan_idct!(A [, dims [, flags [, timelimit]]])
Same as plan_idct, but operates in-place on A.
Base.DFT.fftshiftMethod
fftshift(x)
Swap the first and second halves of each dimension of x.
Base.DFT.fftshiftMethod
fftshift(x,dim)
Swap the first and second halves of the given dimension or iterable of dimensions of array x.
Base.DFT.ifftshiftFunction
ifftshift(x, [dim])
Undoes the effect of fftshift.
Base.DSP.filtFunction
filt(b, a, x, [si])
Apply filter described by vectors a and b to vector x, with an optional initial filter state vector si (defaults to zeros).
Base.DSP.filt!Function
filt!(out, b, a, x, [si])
Same as filt but writes the result into the out argument, which may alias the input x to modify it in-place.
Base.DSP.deconvFunction
deconv(b,a) -> c
Construct vector c such that b = conv(a,c) + r. Equivalent to polynomial division.
Base.DSP.convFunction
conv(u,v)
Convolution of two vectors. Uses FFT algorithm.
source
Base.DSP.conv2Function
conv2(u,v,A)
2-D convolution of the matrix A with the 2-D separable kernel generated by the vectors u and v. Uses 2-D FFT algorithm.
conv2(B,A)
2-D convolution of the matrix B with the matrix A. Uses 2-D FFT algorithm.
Base.DSP.xcorrFunction
xcorr(u,v)
Compute the cross-correlation of two vectors.
sourceThe following functions are defined within the Base.FFTW module.
Base.DFT.FFTW.r2rFunction
r2r(A, kind [, dims])
Performs a multidimensional real-input/real-output (r2r) transform of type kind of the array A, as defined in the FFTW manual. kind specifies either a discrete cosine transform of various types (FFTW.REDFT00, FFTW.REDFT01, FFTW.REDFT10, or FFTW.REDFT11), a discrete sine transform of various types (FFTW.RODFT00, FFTW.RODFT01, FFTW.RODFT10, or FFTW.RODFT11), a real-input DFT with halfcomplex-format output (FFTW.R2HC and its inverse FFTW.HC2R), or a discrete Hartley transform (FFTW.DHT). The kind argument may be an array or tuple in order to specify different transform types along the different dimensions of A; kind[end] is used for any unspecified dimensions. See the FFTW manual for precise definitions of these transform types, at http://www.fftw.org/doc.
The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array) to transform along. kind[i] is then the transform type for dims[i], with kind[end] being used for i > length(kind).
See also plan_r2r to pre-plan optimized r2r transforms.
Base.DFT.FFTW.r2r!Function
r2r!(A, kind [, dims])
Same as r2r, but operates in-place on A, which must be an array of real or complex floating-point numbers.
Base.DFT.FFTW.plan_r2rFunction
plan_r2r(A, kind [, dims [, flags [, timelimit]]])
Pre-plan an optimized r2r transform, similar to plan_fft except that the transforms (and the first three arguments) correspond to r2r and r2r!, respectively.
Base.DFT.FFTW.plan_r2r!Function
plan_r2r!(A, kind [, dims [, flags [, timelimit]]])
Similar to plan_fft, but corresponds to r2r!.
© 2009–2016 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/release-0.6/stdlib/math/