cacoshf, cacosh, cacoshl
Defined in header <complex.h> | ||
|---|---|---|
float complex cacoshf( float complex z ); | (1) | (since C99) |
double complex cacosh( double complex z ); | (2) | (since C99) |
long double complex cacoshl( long double complex z ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define acosh( z ) | (4) | (since C99) |
z with branch cut at values less than 1 along the real axis.z has type long double complex, cacoshl is called. if z has type double complex, cacosh is called, if z has type float complex, cacoshf is called. If z is real or integer, then the macro invokes the corresponding real function (acoshf, acosh, acoshl). If z is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.Parameters
| z | - | complex argument |
Return value
The complex arc hyperbolic cosine of z in the interval [0; ∞) along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
-
cacosh(conj(z)) == conj(cacosh(z)) - If
zis±0+0i, the result is+0+iπ/2 - If
zis+x+∞i(for any finite x), the result is+∞+iπ/2 - If
zis+x+NaNi(for non-zero finite x), the result isNaN+NaNiandFE_INVALIDmay be raised. - If
zis0+NaNi, the result isNaN±iπ/2, where the sign of the imaginary part is unspecified - If
zis-∞+yi(for any positive finite y), the result is+∞+iπ - If
zis+∞+yi(for any positive finite y), the result is+∞+0i - If
zis-∞+∞i, the result is+∞+3iπ/4 - If
zis±∞+NaNi, the result is+∞+NaNi - If
zisNaN+yi(for any finite y), the result isNaN+NaNiandFE_INVALIDmay be raised. - If
zisNaN+∞i, the result is+∞+NaNi - If
zisNaN+NaNi, the result isNaN+NaNi
Notes
Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √z+1 √z-1) For any z, acosh(z) =
| √z-1 |
| √1-z |
Example
#include <stdio.h>
#include <complex.h>
int main(void)
{
double complex z = cacosh(0.5);
printf("cacosh(+0.5+0i) = %f%+fi\n", creal(z), cimag(z));
double complex z2 = conj(0.5); // or cacosh(CMPLX(0.5, -0.0)) in C11
printf("cacosh(+0.5-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));
// in upper half-plane, acosh(z) = i*acos(z)
double complex z3 = casinh(1+I);
printf("casinh(1+1i) = %f%+fi\n", creal(z3), cimag(z3));
double complex z4 = I*casin(1+I);
printf("I*asin(1+1i) = %f%+fi\n", creal(z4), cimag(z4));
}Output:
cacosh(+0.5+0i) = 0.000000-1.047198i cacosh(+0.5-0i) (the other side of the cut) = 0.500000-0.000000i casinh(1+1i) = 1.061275+0.666239i I*asin(1+1i) = -1.061275+0.666239i
References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.6.1 The cacosh functions (p: 192)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.2.1 The cacosh functions (p: 539-540)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.6.1 The cacosh functions (p: 174)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.2.1 The cacosh functions (p: 474-475)
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
|
(C99)(C99)(C99) | computes the complex arc cosine (function) |
|
(C99)(C99)(C99) | computes the complex arc hyperbolic sine (function) |
|
(C99)(C99)(C99) | computes the complex arc hyperbolic tangent (function) |
|
(C99)(C99)(C99) | computes the complex hyperbolic cosine (function) |
|
(C99)(C99)(C99) | computes inverse hyperbolic cosine (arcosh(x)) (function) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
http://en.cppreference.com/w/c/numeric/complex/cacosh