Getting started
scikit-image is an image processing Python package that works with numpy arrays. The package is imported as skimage:
>>> import skimage
Most functions of skimage are found within submodules:
>>> from skimage import data >>> camera = data.camera()
A list of submodules and functions is found on the API reference webpage.
Within scikit-image, images are represented as NumPy arrays, for example 2-D arrays for grayscale 2-D images
>>> type(camera) <type 'numpy.ndarray'> >>> # An image with 512 rows and 512 columns >>> camera.shape (512, 512)
The skimage.data submodule provides a set of functions returning example images, that can be used to get started quickly on using scikit-image’s functions:
>>> coins = data.coins() >>> from skimage import filters >>> threshold_value = filters.threshold_otsu(coins) >>> threshold_value 107
Of course, it is also possible to load your own images as NumPy arrays from image files, using skimage.io.imread():
>>> import os >>> filename = os.path.join(skimage.data_dir, 'moon.png') >>> from skimage import io >>> moon = io.imread(filename)
Use natsort to load multiple images
>>> import os
>>> from natsort import natsorted, ns
>>> from skimage import io
>>> list_files = os.listdir('.')
>>> list_files
['01.png', '010.png', '0101.png', '0190.png', '02.png']
>>> list_files = natsorted(list_files)
>>> list_files
['01.png', '02.png', '010.png', '0101.png', '0190.png']
>>> image_list = []
>>> for filename in list_files:
...   image_list.append(io.imread(filename))
    © 2019 the scikit-image team
Licensed under the BSD 3-clause License.
    https://scikit-image.org/docs/0.18.x/user_guide/getting_started.html