Module: exposure
| Performs Gamma Correction on the input image. |
| Performs Logarithmic correction on the input image. |
| Performs Sigmoid Correction on the input image. |
Return cumulative distribution function (cdf) for the given image. | |
| Contrast Limited Adaptive Histogram Equalization (CLAHE). |
| Return image after histogram equalization. |
| Return histogram of image. |
| Determine if an image is low contrast. |
| Adjust an image so that its cumulative histogram matches that of another. |
| Return image after stretching or shrinking its intensity levels. |
adjust_gamma
-
skimage.exposure.adjust_gamma(image, gamma=1, gain=1)
[source] -
Performs Gamma Correction on the input image.
Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation
O = I**gamma
after scaling each pixel to the range 0 to 1.- Parameters
-
-
imagendarray
-
Input image.
-
gammafloat, optional
-
Non negative real number. Default value is 1.
-
gainfloat, optional
-
The constant multiplier. Default value is 1.
-
- Returns
-
-
outndarray
-
Gamma corrected output image.
-
See also
Notes
For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image.
For gamma less than 1, the histogram will shift towards right and the output image will be brighter than the input image.
References
Examples
>>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.moon()) >>> gamma_corrected = exposure.adjust_gamma(image, 2) >>> # Output is darker for gamma > 1 >>> image.mean() > gamma_corrected.mean() True
Examples using skimage.exposure.adjust_gamma
adjust_log
-
skimage.exposure.adjust_log(image, gain=1, inv=False)
[source] -
Performs Logarithmic correction on the input image.
This function transforms the input image pixelwise according to the equation
O = gain*log(1 + I)
after scaling each pixel to the range 0 to 1. For inverse logarithmic correction, the equation isO = gain*(2**I - 1)
.- Parameters
-
-
imagendarray
-
Input image.
-
gainfloat, optional
-
The constant multiplier. Default value is 1.
-
invfloat, optional
-
If True, it performs inverse logarithmic correction, else correction will be logarithmic. Defaults to False.
-
- Returns
-
-
outndarray
-
Logarithm corrected output image.
-
See also
References
adjust_sigmoid
-
skimage.exposure.adjust_sigmoid(image, cutoff=0.5, gain=10, inv=False)
[source] -
Performs Sigmoid Correction on the input image.
Also known as Contrast Adjustment. This function transforms the input image pixelwise according to the equation
O = 1/(1 + exp*(gain*(cutoff - I)))
after scaling each pixel to the range 0 to 1.- Parameters
-
-
imagendarray
-
Input image.
-
cutofffloat, optional
-
Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0.5.
-
gainfloat, optional
-
The constant multiplier in exponential’s power of sigmoid function. Default value is 10.
-
invbool, optional
-
If True, returns the negative sigmoid correction. Defaults to False.
-
- Returns
-
-
outndarray
-
Sigmoid corrected output image.
-
See also
References
-
1
-
Gustav J. Braun, “Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions”, http://www.cis.rit.edu/fairchild/PDFs/PAP07.pdf
cumulative_distribution
-
skimage.exposure.cumulative_distribution(image, nbins=256)
[source] -
Return cumulative distribution function (cdf) for the given image.
- Parameters
-
-
imagearray
-
Image array.
-
nbinsint, optional
-
Number of bins for image histogram.
-
- Returns
-
-
img_cdfarray
-
Values of cumulative distribution function.
-
bin_centersarray
-
Centers of bins.
-
See also
References
Examples
>>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.camera()) >>> hi = exposure.histogram(image) >>> cdf = exposure.cumulative_distribution(image) >>> np.alltrue(cdf[0] == np.cumsum(hi[0])/float(image.size)) True
Examples using skimage.exposure.cumulative_distribution
equalize_adapthist
-
skimage.exposure.equalize_adapthist(image, kernel_size=None, clip_limit=0.01, nbins=256)
[source] -
Contrast Limited Adaptive Histogram Equalization (CLAHE).
An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image.
- Parameters
-
-
image(N1, …,NN[, C]) ndarray
-
Input image.
- kernel_size: int or array_like, optional
-
Defines the shape of contextual regions used in the algorithm. If iterable is passed, it must have the same number of elements as
image.ndim
(without color channel). If integer, it is broadcasted to eachimage
dimension. By default,kernel_size
is 1/8 ofimage
height by 1/8 of its width. -
clip_limitfloat, optional
-
Clipping limit, normalized between 0 and 1 (higher values give more contrast).
-
nbinsint, optional
-
Number of gray bins for histogram (“data range”).
-
- Returns
-
-
out(N1, …,NN[, C]) ndarray
-
Equalized image with float64 dtype.
-
See also
-
equalize_hist,
rescale_intensity
Notes
-
- For color images, the following steps are performed:
-
- The image is converted to HSV color space
- The CLAHE algorithm is run on the V (Value) channel
- The image is converted back to RGB space and returned
- For RGBA images, the original alpha channel is removed.
Changed in version 0.17: The values returned by this function are slightly shifted upwards because of an internal change in rounding behavior.
References
Examples using skimage.exposure.equalize_adapthist
equalize_hist
-
skimage.exposure.equalize_hist(image, nbins=256, mask=None)
[source] -
Return image after histogram equalization.
- Parameters
-
-
imagearray
-
Image array.
-
nbinsint, optional
-
Number of bins for image histogram. Note: this argument is ignored for integer images, for which each integer is its own bin.
- mask: ndarray of bools or 0s and 1s, optional
-
Array of same shape as
image
. Only points at which mask == True are used for the equalization, which is applied to the whole image.
-
- Returns
-
-
outfloat array
-
Image array after histogram equalization.
-
Notes
This function is adapted from [1] with the author’s permission.
References
Examples using skimage.exposure.equalize_hist
histogram
-
skimage.exposure.histogram(image, nbins=256, source_range='image', normalize=False)
[source] -
Return histogram of image.
Unlike
numpy.histogram
, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution.The histogram is computed on the flattened image: for color images, the function should be used separately on each channel to obtain a histogram for each color channel.
- Parameters
-
-
imagearray
-
Input image.
-
nbinsint, optional
-
Number of bins used to calculate histogram. This value is ignored for integer arrays.
-
source_rangestring, optional
-
‘image’ (default) determines the range from the input image. ‘dtype’ determines the range from the expected range of the images of that data type.
-
normalizebool, optional
-
If True, normalize the histogram by the sum of its values.
-
- Returns
-
-
histarray
-
The values of the histogram.
-
bin_centersarray
-
The values at the center of the bins.
-
See also
Examples
>>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.camera()) >>> np.histogram(image, bins=2) (array([ 93585, 168559]), array([0. , 0.5, 1. ])) >>> exposure.histogram(image, nbins=2) (array([ 93585, 168559]), array([0.25, 0.75]))
Examples using skimage.exposure.histogram
is_low_contrast
-
skimage.exposure.is_low_contrast(image, fraction_threshold=0.05, lower_percentile=1, upper_percentile=99, method='linear')
[source] -
Determine if an image is low contrast.
- Parameters
-
-
imagearray-like
-
The image under test.
-
fraction_thresholdfloat, optional
-
The low contrast fraction threshold. An image is considered low- contrast when its range of brightness spans less than this fraction of its data type’s full range. [1]
-
lower_percentilefloat, optional
-
Disregard values below this percentile when computing image contrast.
-
upper_percentilefloat, optional
-
Disregard values above this percentile when computing image contrast.
-
methodstr, optional
-
The contrast determination method. Right now the only available option is “linear”.
-
- Returns
-
-
outbool
-
True when the image is determined to be low contrast.
-
References
Examples
>>> image = np.linspace(0, 0.04, 100) >>> is_low_contrast(image) True >>> image[-1] = 1 >>> is_low_contrast(image) True >>> is_low_contrast(image, upper_percentile=100) False
match_histograms
-
skimage.exposure.match_histograms(image, reference, *, multichannel=False)
[source] -
Adjust an image so that its cumulative histogram matches that of another.
The adjustment is applied separately for each channel.
- Parameters
-
-
imagendarray
-
Input image. Can be gray-scale or in color.
-
referencendarray
-
Image to match histogram of. Must have the same number of channels as image.
-
multichannelbool, optional
-
Apply the matching separately for each channel.
-
- Returns
-
-
matchedndarray
-
Transformed input image.
-
- Raises
-
- ValueError
-
Thrown when the number of channels in the input image and the reference differ.
References
rescale_intensity
-
skimage.exposure.rescale_intensity(image, in_range='image', out_range='dtype')
[source] -
Return image after stretching or shrinking its intensity levels.
The desired intensity range of the input and output,
in_range
andout_range
respectively, are used to stretch or shrink the intensity range of the input image. See examples below.- Parameters
-
-
imagearray
-
Image array.
-
in_range, out_rangestr or 2-tuple, optional
-
Min and max intensity values of input and output image. The possible values for this parameter are enumerated below.
- ‘image’
-
Use image min/max as the intensity range.
- ‘dtype’
-
Use min/max of the image’s dtype as the intensity range.
- dtype-name
-
Use intensity range based on desired
dtype
. Must be valid key inDTYPE_RANGE
. - 2-tuple
-
Use
range_values
as explicit min/max intensities.
-
- Returns
-
-
outarray
-
Image array after rescaling its intensity. This image is the same dtype as the input image.
-
See also
Notes
Changed in version 0.17: The dtype of the output array has changed to match the output dtype, or float if the output range is specified by a pair of floats.
Examples
By default, the min/max intensities of the input image are stretched to the limits allowed by the image’s dtype, since
in_range
defaults to ‘image’ andout_range
defaults to ‘dtype’:>>> image = np.array([51, 102, 153], dtype=np.uint8) >>> rescale_intensity(image) array([ 0, 127, 255], dtype=uint8)
It’s easy to accidentally convert an image dtype from uint8 to float:
>>> 1.0 * image array([ 51., 102., 153.])
Use
rescale_intensity
to rescale to the proper range for float dtypes:>>> image_float = 1.0 * image >>> rescale_intensity(image_float) array([0. , 0.5, 1. ])
To maintain the low contrast of the original, use the
in_range
parameter:>>> rescale_intensity(image_float, in_range=(0, 255)) array([0.2, 0.4, 0.6])
If the min/max value of
in_range
is more/less than the min/max image intensity, then the intensity levels are clipped:>>> rescale_intensity(image_float, in_range=(0, 102)) array([0.5, 1. , 1. ])
If you have an image with signed integers but want to rescale the image to just the positive range, use the
out_range
parameter. In that case, the output dtype will be float:>>> image = np.array([-10, 0, 10], dtype=np.int8) >>> rescale_intensity(image, out_range=(0, 127)) array([ 0. , 63.5, 127. ])
To get the desired range with a specific dtype, use
.astype()
:>>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8) array([ 0, 63, 127], dtype=int8)
If the input image is constant, the output will be clipped directly to the output range: >>> image = np.array([130, 130, 130], dtype=np.int32) >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32) array([127, 127, 127], dtype=int32)
Examples using skimage.exposure.rescale_intensity
© 2019 the scikit-image team
Licensed under the BSD 3-clause License.
https://scikit-image.org/docs/0.18.x/api/skimage.exposure.html