Module: registration
Coarse to fine optical flow estimator. | |
Coarse to fine optical flow estimator. | |
Efficient subpixel image translation registration by cross-correlation. |
optical_flow_ilk
-
skimage.registration.optical_flow_ilk(reference_image, moving_image, *, radius=7, num_warp=10, gaussian=False, prefilter=False, dtype=<class 'numpy.float32'>)
[source] -
Coarse to fine optical flow estimator.
The iterative Lucas-Kanade (iLK) solver is applied at each level of the image pyramid. iLK [1] is a fast and robust alternative to TVL1 algorithm although less accurate for rendering flat surfaces and object boundaries (see [2]).
- Parameters
-
-
reference_imagendarray, shape (M, N[, P[, …]])
-
The first gray scale image of the sequence.
-
moving_imagendarray, shape (M, N[, P[, …]])
-
The second gray scale image of the sequence.
-
radiusint, optional
-
Radius of the window considered around each pixel.
-
num_warpint, optional
-
Number of times moving_image is warped.
-
gaussianbool, optional
-
If True, a Gaussian kernel is used for the local integration. Otherwise, a uniform kernel is used.
-
prefilterbool, optional
-
Whether to prefilter the estimated optical flow before each image warp. When True, a median filter with window size 3 along each axis is applied. This helps to remove potential outliers.
-
dtypedtype, optional
-
Output data type: must be floating point. Single precision provides good results and saves memory usage and computation time compared to double precision.
-
- Returns
-
-
flowndarray, shape ((reference_image.ndim, M, N[, P[, …]])
-
The estimated optical flow components for each axis.
-
Notes
- The implemented algorithm is described in Table2 of [1].
- Color images are not supported.
References
-
1(1,2)
-
Le Besnerais, G., & Champagnat, F. (2005, September). Dense optical flow by iterative local window registration. In IEEE International Conference on Image Processing 2005 (Vol. 1, pp. I-137). IEEE. DOI:10.1109/ICIP.2005.1529706
-
2
-
Plyer, A., Le Besnerais, G., & Champagnat, F. (2016). Massively parallel Lucas Kanade optical flow for real-time video processing applications. Journal of Real-Time Image Processing, 11(4), 713-730. DOI:10.1007/s11554-014-0423-0
Examples
>>> from skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from skimage.registration import optical_flow_ilk >>> reference_image, moving_image, disp = stereo_motorcycle() >>> # --- Convert the images to gray level: color is not supported. >>> reference_image = rgb2gray(reference_image) >>> moving_image = rgb2gray(moving_image) >>> flow = optical_flow_ilk(moving_image, reference_image)
Examples using skimage.registration.optical_flow_ilk
optical_flow_tvl1
-
skimage.registration.optical_flow_tvl1(reference_image, moving_image, *, attachment=15, tightness=0.3, num_warp=5, num_iter=10, tol=0.0001, prefilter=False, dtype=<class 'numpy.float32'>)
[source] -
Coarse to fine optical flow estimator.
The TV-L1 solver is applied at each level of the image pyramid. TV-L1 is a popular algorithm for optical flow estimation introduced by Zack et al. [1], improved in [2] and detailed in [3].
- Parameters
-
-
reference_imagendarray, shape (M, N[, P[, …]])
-
The first gray scale image of the sequence.
-
moving_imagendarray, shape (M, N[, P[, …]])
-
The second gray scale image of the sequence.
-
attachmentfloat, optional
-
Attachment parameter (\(\lambda\) in [1]). The smaller this parameter is, the smoother the returned result will be.
-
tightnessfloat, optional
-
Tightness parameter (\(\tau\) in [1]). It should have a small value in order to maintain attachement and regularization parts in correspondence.
-
num_warpint, optional
-
Number of times image1 is warped.
-
num_iterint, optional
-
Number of fixed point iteration.
-
tolfloat, optional
-
Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v).
-
prefilterbool, optional
-
Whether to prefilter the estimated optical flow before each image warp. When True, a median filter with window size 3 along each axis is applied. This helps to remove potential outliers.
-
dtypedtype, optional
-
Output data type: must be floating point. Single precision provides good results and saves memory usage and computation time compared to double precision.
-
- Returns
-
-
flowndarray, shape ((image0.ndim, M, N[, P[, …]])
-
The estimated optical flow components for each axis.
-
Notes
Color images are not supported.
References
-
1(1,2,3)
-
Zach, C., Pock, T., & Bischof, H. (2007, September). A duality based approach for realtime TV-L 1 optical flow. In Joint pattern recognition symposium (pp. 214-223). Springer, Berlin, Heidelberg. DOI:10.1007/978-3-540-74936-3_22
-
2
-
Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L 1 optical flow. In Statistical and geometrical approaches to visual motion analysis (pp. 23-45). Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-03061-1_2
-
3
-
Pérez, J. S., Meinhardt-Llopis, E., & Facciolo, G. (2013). TV-L1 optical flow estimation. Image Processing On Line, 2013, 137-150. DOI:10.5201/ipol.2013.26
Examples
>>> from skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from skimage.registration import optical_flow_tvl1 >>> image0, image1, disp = stereo_motorcycle() >>> # --- Convert the images to gray level: color is not supported. >>> image0 = rgb2gray(image0) >>> image1 = rgb2gray(image1) >>> flow = optical_flow_tvl1(image1, image0)
Examples using skimage.registration.optical_flow_tvl1
phase_cross_correlation
-
skimage.registration.phase_cross_correlation(reference_image, moving_image, *, upsample_factor=1, space='real', return_error=True, reference_mask=None, moving_mask=None, overlap_ratio=0.3)
[source] -
Efficient subpixel image translation registration by cross-correlation.
This code gives the same precision as the FFT upsampled cross-correlation in a fraction of the computation time and with reduced memory requirements. It obtains an initial estimate of the cross-correlation peak by an FFT and then refines the shift estimation by upsampling the DFT only in a small neighborhood of that estimate by means of a matrix-multiply DFT.
- Parameters
-
-
reference_imagearray
-
Reference image.
-
moving_imagearray
-
Image to register. Must be same dimensionality as
reference_image
. -
upsample_factorint, optional
-
Upsampling factor. Images will be registered to within
1 / upsample_factor
of a pixel. For exampleupsample_factor == 20
means the images will be registered within 1/20th of a pixel. Default is 1 (no upsampling). Not used if any ofreference_mask
ormoving_mask
is not None. -
spacestring, one of “real” or “fourier”, optional
-
Defines how the algorithm interprets input data. “real” means data will be FFT’d to compute the correlation, while “fourier” data will bypass FFT of input data. Case insensitive. Not used if any of
reference_mask
ormoving_mask
is not None. -
return_errorbool, optional
-
Returns error and phase difference if on, otherwise only shifts are returned. Has noeffect if any of
reference_mask
ormoving_mask
is not None. In this case only shifts is returned. -
reference_maskndarray
-
Boolean mask for
reference_image
. The mask should evaluate toTrue
(or 1) on valid pixels.reference_mask
should have the same shape asreference_image
. -
moving_maskndarray or None, optional
-
Boolean mask for
moving_image
. The mask should evaluate toTrue
(or 1) on valid pixels.moving_mask
should have the same shape asmoving_image
. IfNone
,reference_mask
will be used. -
overlap_ratiofloat, optional
-
Minimum allowed overlap ratio between images. The correlation for translations corresponding with an overlap ratio lower than this threshold will be ignored. A lower
overlap_ratio
leads to smaller maximum translation, while a higheroverlap_ratio
leads to greater robustness against spurious matches due to small overlap between masked images. Used only if one ofreference_mask
ormoving_mask
is None.
-
- Returns
-
-
shiftsndarray
-
Shift vector (in pixels) required to register
moving_image
withreference_image
. Axis ordering is consistent with numpy (e.g. Z, Y, X) -
errorfloat
-
Translation invariant normalized RMS error between
reference_image
andmoving_image
. -
phasedifffloat
-
Global phase difference between the two images (should be zero if images are non-negative).
-
References
-
1
-
Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, “Efficient subpixel image registration algorithms,” Optics Letters 33, 156-158 (2008). DOI:10.1364/OL.33.000156
-
2
-
James R. Fienup, “Invariant error metrics for image reconstruction” Optics Letters 36, 8352-8357 (1997). DOI:10.1364/AO.36.008352
-
3
-
Dirk Padfield. Masked Object Registration in the Fourier Domain. IEEE Transactions on Image Processing, vol. 21(5), pp. 2706-2718 (2012). DOI:10.1109/TIP.2011.2181402
-
4
-
D. Padfield. “Masked FFT registration”. In Proc. Computer Vision and Pattern Recognition, pp. 2918-2925 (2010). DOI:10.1109/CVPR.2010.5540032
Examples using skimage.registration.phase_cross_correlation
© 2019 the scikit-image team
Licensed under the BSD 3-clause License.
https://scikit-image.org/docs/0.18.x/api/skimage.registration.html