Object scala.concurrent.Future.never
object never extends Future[Nothing]
Value Members
final def !=(arg0: Any): Boolean
Test two objects for inequality.
- returns
true
if !(this == that), false otherwise.
- Definition Classes
- AnyRef → Any
final def ##(): Int
Equivalent to x.hashCode
except for boxed numeric types and null
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. For null
returns a hashcode where null.hashCode
throws a NullPointerException
.
- returns
a hash value consistent with ==
- Definition Classes
- AnyRef → Any
final def ==(arg0: Any): Boolean
The expression x == that
is equivalent to if (x eq null) that eq null else x.equals(that)
.
- returns
true
if the receiver object is equivalent to the argument;false
otherwise.
- Definition Classes
- AnyRef → Any
def andThen[U](pf: PartialFunction[Try[Nothing], U])(implicit executor: ExecutionContext): Future[Nothing]
Applies the side-effecting function to the result of this future, and returns a new future with the result of this future.
This method allows one to enforce that the callbacks are executed in a specified order.
Note that if one of the chained andThen
callbacks throws an exception, that exception is not propagated to the subsequent andThen
callbacks. Instead, the subsequent andThen
callbacks are given the original value of this future.
The following example prints out 5
:
val f = Future { 5 } f andThen { case r => sys.error("runtime exception") } andThen { case Failure(t) => println(t) case Success(v) => println(v) }
Since this method executes asynchronously and does not produce a return value, any non-fatal exceptions thrown will be reported to the ExecutionContext
.
- U
only used to accept any return type of the given
PartialFunction
- pf
a
PartialFunction
which will be conditionally applied to the outcome of thisFuture
- returns
a
Future
which will be completed with the exact same outcome as thisFuture
but after thePartialFunction
has been executed.
final def asInstanceOf[T0]: T0
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at runtime, while the expression List(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.
- returns
the receiver object.
- Definition Classes
- Any
- Exceptions thrown
ClassCastException
if the receiver object is not an instance of the erasure of typeT0
.
def clone(): AnyRef
Create a copy of the receiver object.
The default implementation of the clone
method is platform dependent.
- returns
a copy of the receiver object.
def collect[S](pf: PartialFunction[Nothing, S])(implicit executor: ExecutionContext): Future[S]
Creates a new future by mapping the value of the current future, if the given partial function is defined at that value.
If the current future contains a value for which the partial function is defined, the new future will also hold that value. Otherwise, the resulting future will fail with a NoSuchElementException
.
If the current future fails, then the resulting future also fails.
Example:
val f = Future { -5 } val g = f collect { case x if x < 0 => -x } val h = f collect { case x if x > 0 => x * 2 } g foreach println // Eventually prints 5 Await.result(h, Duration.Zero) // throw a NoSuchElementException
- S
the type of the returned
Future
- pf
the
PartialFunction
to apply to the successful result of thisFuture
- returns
a
Future
holding the result of application of thePartialFunction
or aNoSuchElementException
final def eq(arg0: AnyRef): Boolean
Tests whether the argument (that
) is a reference to the receiver object (this
).
The eq
method implements an equivalence relation on non-null instances of AnyRef
, and has three additional properties:
-
It is consistent: for any non-null instances
x
and y
of type AnyRef
, multiple invocations of x.eq(y)
consistently returns true
or consistently returns false
.For any non-null instance x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.
null.eq(null)
returns true
. When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
- returns
true
if the argument is a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
def equals(arg0: Any): Boolean
The equality method for reference types. Default implementation delegates to eq
.
See also equals
in scala.Any.
- returns
true
if the receiver object is equivalent to the argument;false
otherwise.
- Definition Classes
- AnyRef → Any
def failed: Future[Throwable]
The returned Future
will be successfully completed with the Throwable
of the original Future
if the original Future
fails.
If the original Future
is successful, the returned Future
is failed with a NoSuchElementException
.
This future may contain a throwable object and this means that the future failed. Futures obtained through combinators have the same exception as the future they were obtained from. The following throwable objects are not contained in the future:
Error
- errors are not contained within futures
InterruptedException
- not contained within futuresall scala.util.control.ControlThrowable
except NonLocalReturnControl
- not contained within futures Instead, the future is completed with a ExecutionException with one of the exceptions above as the cause. If a future is failed with a scala.runtime.NonLocalReturnControl
, it is completed with a value from that throwable instead.
- returns
a failed projection of this
Future
.
def fallbackTo[U](that: Future[U]): Future[U]
Creates a new future which holds the result of this future if it was completed successfully, or, if not, the result of the that
future if that
is completed successfully. If both futures are failed, the resulting future holds the throwable object of the first future.
Using this method will not cause concurrent programs to become nondeterministic.
Example:
val f = Future { sys.error("failed") } val g = Future { 5 } val h = f fallbackTo g h foreach println // Eventually prints 5
- U
the type of the other
Future
and the resultingFuture
- that
the
Future
whose result we want to use if thisFuture
fails.- returns
a
Future
with the successful result of this or thatFuture
or the failure of thisFuture
if both fail
def filter(p: (Nothing) ⇒ Boolean)(implicit executor: ExecutionContext): Future[Nothing]
Creates a new future by filtering the value of the current future with a predicate.
If the current future contains a value which satisfies the predicate, the new future will also hold that value. Otherwise, the resulting future will fail with a NoSuchElementException
.
If the current future fails, then the resulting future also fails.
Example:
val f = Future { 5 } val g = f filter { _ % 2 == 1 } val h = f filter { _ % 2 == 0 } g foreach println // Eventually prints 5 Await.result(h, Duration.Zero) // throw a NoSuchElementException
- p
the predicate to apply to the successful result of this
Future
- returns
a
Future
which will hold the successful result of thisFuture
if it matches the predicate or aNoSuchElementException
def finalize(): Unit
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the finalize
method is invoked, as well as the interaction between finalize
and non-local returns and exceptions, are all platform dependent.
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- Note
not specified by SLS as a member of AnyRef
def flatMap[S](f: (Nothing) ⇒ Future[S])(implicit executor: ExecutionContext): Future[S]
Creates a new future by applying a function to the successful result of this future, and returns the result of the function as the new future. If this future is completed with an exception then the new future will also contain this exception.
Example:
val f = Future { 5 } val g = Future { 3 } val h = for { x: Int <- f // returns Future(5) y: Int <- g // returns Future(3) } yield x + y
is translated to:
f flatMap { (x: Int) => g map { (y: Int) => x + y } }
- S
the type of the returned
Future
- f
the function which will be applied to the successful result of this
Future
- returns
a
Future
which will be completed with the result of the application of the function
def flatten[S](implicit ev: <:<[Nothing, Future[S]]): Future[S]
Creates a new future with one level of nesting flattened, this method is equivalent to flatMap(identity)
.
- S
the type of the returned
Future
def foreach[U](f: (Nothing) ⇒ U)(implicit executor: ExecutionContext): Unit
Asynchronously processes the value in the future once the value becomes available.
WARNING: Will not be called if this future is never completed or if it is completed with a failure.
Since this method executes asynchronously and does not produce a return value, any non-fatal exceptions thrown will be reported to the ExecutionContext
.
- U
only used to accept any return type of the given callback function
- f
the function which will be executed if this
Future
completes with a result, the return value off
will be discarded.
final def getClass(): Class[_]
Returns the runtime class representation of the object.
- returns
a class object corresponding to the runtime type of the receiver.
def hashCode(): Int
The hashCode method for reference types. See hashCode in scala.Any.
- returns
the hash code value for this object.
def isCompleted: Boolean
Returns whether the future had already been completed with a value or an exception.
Note: using this method yields nondeterministic dataflow programs.
- returns
true
if the future was completed,false
otherwise
final def isInstanceOf[T0]: Boolean
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics. Therefore the expression 1.isInstanceOf[String]
will return false
, while the expression List(1).isInstanceOf[List[String]]
will return true
. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the specified type.
- returns
true
if the receiver object is an instance of erasure of typeT0
;false
otherwise.
- Definition Classes
- Any
def map[S](f: (Nothing) ⇒ S)(implicit executor: ExecutionContext): Future[S]
Creates a new future by applying a function to the successful result of this future. If this future is completed with an exception then the new future will also contain this exception.
Example:
val f = Future { "The future" } val g = f map { x: String => x + " is now!" }
Note that a for comprehension involving a Future
may expand to include a call to map
and or flatMap
and withFilter
. See scala.concurrent.Future#flatMap for an example of such a comprehension.
- S
the type of the returned
Future
- f
the function which will be applied to the successful result of this
Future
- returns
a
Future
which will be completed with the result of the application of the function
def mapTo[S](implicit tag: ClassTag[S]): Future[S]
Creates a new Future[S]
which is completed with this Future
's result if that conforms to S
's erased type or a ClassCastException
otherwise.
- S
the type of the returned
Future
- tag
the
ClassTag
which will be used to cast the result of thisFuture
- returns
a
Future
holding the casted result of thisFuture
or aClassCastException
otherwise
final def ne(arg0: AnyRef): Boolean
Equivalent to !(this eq that)
.
- returns
true
if the argument is not a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
final def notify(): Unit
Wakes up a single thread that is waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
final def notifyAll(): Unit
Wakes up all threads that are waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
def onComplete[U](f: (Try[Nothing]) ⇒ U)(implicit executor: ExecutionContext): Unit
When this future is completed, either through an exception, or a value, apply the provided function.
If the future has already been completed, this will either be applied immediately or be scheduled asynchronously.
Note that the returned value of f
will be discarded.
Since this method executes asynchronously and does not produce a return value, any non-fatal exceptions thrown will be reported to the ExecutionContext
.
Multiple callbacks may be registered; there is no guarantee that they will be executed in a particular order.
The provided callback always runs in the provided implicit ExecutionContext
, though there is no guarantee that the execute()
method on the ExecutionContext
will be called once per callback or that execute()
will be called in the current thread. That is, the implementation may run multiple callbacks in a batch within a single execute()
and it may run execute()
either immediately or asynchronously. Completion of the Future must *happen-before* the invocation of the callback.
- U
only used to accept any return type of the given callback function
- f
the function to be executed when this
Future
completes
def onFailure[U](pf: PartialFunction[Throwable, U])(implicit executor: ExecutionContext): Unit
When this future is completed with a failure (i.e., with a throwable), apply the provided callback to the throwable.
This future may contain a throwable object and this means that the future failed. Futures obtained through combinators have the same exception as the future they were obtained from. The following throwable objects are not contained in the future:
Error
- errors are not contained within futures
InterruptedException
- not contained within futuresall scala.util.control.ControlThrowable
except NonLocalReturnControl
- not contained within futures Instead, the future is completed with a ExecutionException with one of the exceptions above as the cause. If a future is failed with a scala.runtime.NonLocalReturnControl
, it is completed with a value from that throwable instead.
If the future has already been completed with a failure, this will either be applied immediately or be scheduled asynchronously.
Will not be called in case that the future is completed with a value.
Note that the returned value of pf
will be discarded.
Since this method executes asynchronously and does not produce a return value, any non-fatal exceptions thrown will be reported to the ExecutionContext
.
Multiple callbacks may be registered; there is no guarantee that they will be executed in a particular order.
The provided callback always runs in the provided implicit ExecutionContext
, though there is no guarantee that the execute()
method on the ExecutionContext
will be called once per callback or that execute()
will be called in the current thread. That is, the implementation may run multiple callbacks in a batch within a single execute()
and it may run execute()
either immediately or asynchronously. Completion of the Future must *happen-before* the invocation of the callback.
def onSuccess[U](pf: PartialFunction[Nothing, U])(implicit executor: ExecutionContext): Unit
When this future is completed successfully (i.e., with a value), apply the provided partial function to the value if the partial function is defined at that value.
If the future has already been completed with a value, this will either be applied immediately or be scheduled asynchronously.
Note that the returned value of pf
will be discarded.
Since this method executes asynchronously and does not produce a return value, any non-fatal exceptions thrown will be reported to the ExecutionContext
.
Multiple callbacks may be registered; there is no guarantee that they will be executed in a particular order.
The provided callback always runs in the provided implicit ExecutionContext
, though there is no guarantee that the execute()
method on the ExecutionContext
will be called once per callback or that execute()
will be called in the current thread. That is, the implementation may run multiple callbacks in a batch within a single execute()
and it may run execute()
either immediately or asynchronously. Completion of the Future must *happen-before* the invocation of the callback.
def ready(atMost: Duration)(implicit permit: CanAwait): never.this.type
Await the "completed" state of this Awaitable
.
This method should not be called directly; use Await.ready instead.
- atMost
maximum wait time, which may be negative (no waiting is done), Duration.Inf for unbounded waiting, or a finite positive duration
- returns
this
Awaitable
- Definition Classes
- never → Awaitable
- Annotations
- @throws( clazz = classOf[TimeoutException] ) @throws( clazz = classOf[InterruptedException] )
- Exceptions thrown
-
IllegalArgumentException
ifatMost
is Duration.UndefinedInterruptedException
if the current thread is interrupted while waitingTimeoutException
if after waiting for the specified time thisAwaitable
is still not ready
def recover[U](pf: PartialFunction[Throwable, U])(implicit executor: ExecutionContext): Future[U]
Creates a new future that will handle any matching throwable that this future might contain. If there is no match, or if this future contains a valid result then the new future will contain the same.
Example:
Future (6 / 0) recover { case e: ArithmeticException => 0 } // result: 0 Future (6 / 0) recover { case e: NotFoundException => 0 } // result: exception Future (6 / 2) recover { case e: ArithmeticException => 0 } // result: 3
- U
the type of the returned
Future
- pf
the
PartialFunction
to apply if thisFuture
fails- returns
a
Future
with the successful value of thisFuture
or the result of thePartialFunction
def recoverWith[U](pf: PartialFunction[Throwable, Future[U]])(implicit executor: ExecutionContext): Future[U]
Creates a new future that will handle any matching throwable that this future might contain by assigning it a value of another future.
If there is no match, or if this future contains a valid result then the new future will contain the same result.
Example:
val f = Future { Int.MaxValue } Future (6 / 0) recoverWith { case e: ArithmeticException => f } // result: Int.MaxValue
- U
the type of the returned
Future
- pf
the
PartialFunction
to apply if thisFuture
fails- returns
a
Future
with the successful value of thisFuture
or the outcome of theFuture
returned by thePartialFunction
def result(atMost: Duration)(implicit permit: CanAwait): Nothing
Await and return the result (of type T
) of this Awaitable
.
This method should not be called directly; use Await.result instead.
- atMost
maximum wait time, which may be negative (no waiting is done), Duration.Inf for unbounded waiting, or a finite positive duration
- returns
the result value if the
Awaitable
is completed within the specific maximum wait time
- Definition Classes
- never → Awaitable
- Annotations
- @throws( clazz = classOf[TimeoutException] ) @throws( clazz = classOf[InterruptedException] )
- Exceptions thrown
-
IllegalArgumentException
ifatMost
is Duration.UndefinedInterruptedException
if the current thread is interrupted while waitingTimeoutException
if after waiting for the specified time thisAwaitable
is still not ready
final def synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
def toString(): String
Creates a String representation of this object. The default representation is platform dependent. On the java platform it is the concatenation of the class name, "@", and the object's hashcode in hexadecimal.
- returns
a String representation of the object.
def transform[S](f: (Try[Nothing]) ⇒ Try[S])(implicit executor: ExecutionContext): Future[S]
Creates a new Future by applying the specified function to the result of this Future. If there is any non-fatal exception thrown when 'f' is applied then that exception will be propagated to the resulting future.
- S
the type of the returned
Future
- f
function that transforms the result of this future
- returns
a
Future
that will be completed with the transformed value
def transform[S](s: (Nothing) ⇒ S, f: (Throwable) ⇒ Throwable)(implicit executor: ExecutionContext): Future[S]
Creates a new future by applying the 's' function to the successful result of this future, or the 'f' function to the failed result. If there is any non-fatal exception thrown when 's' or 'f' is applied, that exception will be propagated to the resulting future.
- S
the type of the returned
Future
- s
function that transforms a successful result of the receiver into a successful result of the returned future
- f
function that transforms a failure of the receiver into a failure of the returned future
- returns
a
Future
that will be completed with the transformed value
def transformWith[S](f: (Try[Nothing]) ⇒ Future[S])(implicit executor: ExecutionContext): Future[S]
Creates a new Future by applying the specified function, which produces a Future, to the result of this Future. If there is any non-fatal exception thrown when 'f' is applied then that exception will be propagated to the resulting future.
- S
the type of the returned
Future
- f
function that transforms the result of this future
- returns
a
Future
that will be completed with the transformed value
def value: Option[Try[Nothing]]
The current value of this Future
.
Note: using this method yields nondeterministic dataflow programs.
If the future was not completed the returned value will be None
. If the future was completed the value will be Some(Success(t))
if it contained a valid result, or Some(Failure(error))
if it contained an exception.
- returns
None
if theFuture
wasn't completed,Some
if it was.
final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
final def wait(arg0: Long): Unit
final def withFilter(p: (Nothing) ⇒ Boolean)(implicit executor: ExecutionContext): Future[Nothing]
Used by for-comprehensions.
- Definition Classes
- Future
def zip[U](that: Future[U]): Future[(Nothing, U)]
Zips the values of this
and that
future, and creates a new future holding the tuple of their results.
If this
future fails, the resulting future is failed with the throwable stored in this
. Otherwise, if that
future fails, the resulting future is failed with the throwable stored in that
.
- U
the type of the other
Future
- that
the other
Future
- returns
a
Future
with the results of both futures or the failure of the first of them that failed
def zipWith[U, R](that: Future[U])(f: (Nothing, U) ⇒ R)(implicit executor: ExecutionContext): Future[R]
Zips the values of this
and that
future using a function f
, and creates a new future holding the result.
If this
future fails, the resulting future is failed with the throwable stored in this
. Otherwise, if that
future fails, the resulting future is failed with the throwable stored in that
. If the application of f
throws a throwable, the resulting future is failed with that throwable if it is non-fatal.
- U
the type of the other
Future
- R
the type of the resulting
Future
- that
the other
Future
- f
the function to apply to the results of
this
andthat
- returns
a
Future
with the result of the application off
to the results ofthis
andthat
© 2002-2019 EPFL, with contributions from Lightbend.
Licensed under the Apache License, Version 2.0.
https://www.scala-lang.org/api/2.12.9/scala/concurrent/Future$$never$.html
A Future which is never completed.