Trait scala.collection.mutable.LinkedListLike
trait LinkedListLike[A, This <: Seq[A] with LinkedListLike[A, This]] extends SeqLike[A, This]
Type Members
class WithFilter extends FilterMonadic[A, Repr]
A class supporting filtered operations. Instances of this class are returned by method withFilter
.
- Definition Classes
- TraversableLike
type Self = This
The type implementing this traversable
- Attributes
- protected[this]
- Definition Classes
- TraversableLike
Abstract Value Members
abstract def newBuilder: Builder[A, This]
Creates a new builder for this collection type.
- Attributes
- protected[this]
- Definition Classes
- TraversableLike → HasNewBuilder
abstract def seq: collection.Seq[A]
- Definition Classes
- GenSeqLike → Parallelizable → GenTraversableOnce
Concrete Value Members
final def !=(arg0: Any): Boolean
Test two objects for inequality.
- returns
true
if !(this == that), false otherwise.
- Definition Classes
- AnyRef → Any
final def ##(): Int
Equivalent to x.hashCode
except for boxed numeric types and null
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. For null
returns a hashcode where null.hashCode
throws a NullPointerException
.
- returns
a hash value consistent with ==
- Definition Classes
- AnyRef → Any
def +(other: String): String
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to any2stringadd[LinkedListLike[A, This]] performed by method any2stringadd in scala.Predef.
- Definition Classes
- any2stringadd
def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[This, B, That]): That
Returns a new traversable collection containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the traversable collection is the most specific superclass encompassing the element types of the two operands.
- B
the element type of the returned collection.
- That
the class of the returned collection. Where possible,
That
is the same class as the current collection classRepr
, but this depends on the element typeB
being admissible for that class, which means that an implicit instance of typeCanBuildFrom[Repr, B, That]
is found.- that
the traversable to append.
- bf
an implicit value of class
CanBuildFrom
which determines the result classThat
from the current representation typeRepr
and the new element typeB
.- returns
a new collection of type
That
which contains all elements of this traversable collection followed by all elements ofthat
.
- Definition Classes
- TraversableLike → GenTraversableLike
def ++:[B >: A, That](that: collection.Traversable[B])(implicit bf: CanBuildFrom[This, B, That]): That
As with ++
, returns a new collection containing the elements from the left operand followed by the elements from the right operand.
It differs from ++
in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = LinkedList(2) y: scala.collection.mutable.LinkedList[Int] = LinkedList(2) scala> val z = x ++: y z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
This overload exists because: for the implementation of ++:
we should reuse that of ++
because many collections override it with more efficient versions.
Since TraversableOnce
has no ++
method, we have to implement that directly, but Traversable
and down can use the overload.
- B
the element type of the returned collection.
- That
the class of the returned collection. Where possible,
That
is the same class as the current collection classRepr
, but this depends on the element typeB
being admissible for that class, which means that an implicit instance of typeCanBuildFrom[Repr, B, That]
is found.- that
the traversable to append.
- bf
an implicit value of class
CanBuildFrom
which determines the result classThat
from the current representation typeRepr
and the new element typeB
.- returns
a new collection of type
That
which contains all elements of this traversable collection followed by all elements ofthat
.
- Definition Classes
- TraversableLike
def ++:[B](that: TraversableOnce[B]): LinkedList[B]
As with ++
, returns a new collection containing the elements from the left operand followed by the elements from the right operand.
It differs from ++
in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = LinkedList(2) y: scala.collection.mutable.LinkedList[Int] = LinkedList(2) scala> val z = x ++: y z: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2)
- B
the element type of the returned collection.
- that
the traversable to append.
- returns
a new linked list which contains all elements of this linked list followed by all elements of
that
.
- Definition Classes
- TraversableLike
def +:(elem: A): LinkedList[A]
A copy of the linked list with an element prepended.
Note that :-ending operators are right associative (see example). A mnemonic for +:
vs. :+
is: the COLon goes on the COLlection side.
Also, the original linked list is not modified, so you will want to capture the result.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = 2 +: x y: List[Int] = List(2, 1) scala> println(x) List(1)
- elem
the prepended element
- returns
a new linked list consisting of
elem
followed by all elements of this linked list .
- Definition Classes
- SeqLike → GenSeqLike
def ->[B](y: B): (LinkedListLike[A, This], B)
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to ArrowAssoc[LinkedListLike[A, This]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @inline()
def /:[B](z: B)(op: (B, A) ⇒ B): B
Applies a binary operator to a start value and all elements of this traversable or iterator, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as xs foldLeft z
.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = (5 /: a)(_+_) b: Int = 15 scala> val c = (5 /: a)((x,y) => x + y) c: Int = 15
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- z
the start value.
- op
the binary operator.
- returns
-
the result of inserting
op
between consecutive elements of this traversable or iterator, going left to right with the start valuez
on the left:op(...op(op(z, x_1), x_2), ..., x_n)
where
x1, ..., xn
are the elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def :+(elem: A): LinkedList[A]
A copy of this linked list with an element appended.
A mnemonic for +:
vs. :+
is: the COLon goes on the COLlection side.
Note: will not terminate for infinite-sized collections.
Example:
scala> val a = List(1) a: List[Int] = List(1) scala> val b = a :+ 2 b: List[Int] = List(1, 2) scala> println(a) List(1)
- elem
the appended element
- returns
a new linked list consisting of all elements of this linked list followed by
elem
.
- Definition Classes
- SeqLike → GenSeqLike
def :\[B](z: B)(op: (A, B) ⇒ B): B
Applies a binary operator to all elements of this traversable or iterator and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as xs foldRight z
.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
Examples:
Note that the folding function used to compute b is equivalent to that used to compute c.
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = (a :\ 5)(_+_) b: Int = 15 scala> val c = (a :\ 5)((x,y) => x + y) c: Int = 15
- B
the result type of the binary operator.
- z
the start value
- op
the binary operator
- returns
-
the result of inserting
op
between consecutive elements of this traversable or iterator, going right to left with the start valuez
on the right:op(x_1, op(x_2, ... op(x_n, z)...))
where
x1, ..., xn
are the elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
final def ==(arg0: Any): Boolean
The expression x == that
is equivalent to if (x eq null) that eq null else x.equals(that)
.
- returns
true
if the receiver object is equivalent to the argument;false
otherwise.
- Definition Classes
- AnyRef → Any
def addString(b: scala.StringBuilder): scala.StringBuilder
Appends all elements of this traversable or iterator to a string builder. The written text consists of the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator without any separator string.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> val h = a.addString(b) h: StringBuilder = 1234
- b
the string builder to which elements are appended.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- TraversableOnce
def addString(b: scala.StringBuilder, sep: String): scala.StringBuilder
Appends all elements of this traversable or iterator to a string builder using a separator string. The written text consists of the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator, separated by the string sep
.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b, ", ") res0: StringBuilder = 1, 2, 3, 4
- b
the string builder to which elements are appended.
- sep
the separator string.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- TraversableOnce
def addString(b: scala.StringBuilder, start: String, sep: String, end: String): scala.StringBuilder
Appends all elements of this traversable or iterator to a string builder using start, end, and separator strings. The written text begins with the string start
and ends with the string end
. Inside, the string representations (w.r.t. the method toString
) of all elements of this traversable or iterator are separated by the string sep
.
Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b , "List(" , ", " , ")") res5: StringBuilder = List(1, 2, 3, 4)
- b
the string builder to which elements are appended.
- start
the starting string.
- sep
the separator string.
- end
the ending string.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- TraversableOnce
def aggregate[B](z: ⇒ B)(seqop: (B, A) ⇒ B, combop: (B, B) ⇒ B): B
Aggregates the results of applying an operator to subsequent elements.
This is a more general form of fold
and reduce
. It is similar to foldLeft
in that it doesn't require the result to be a supertype of the element type. In addition, it allows parallel collections to be processed in chunks, and then combines the intermediate results.
aggregate
splits the traversable or iterator into partitions and processes each partition by sequentially applying seqop
, starting with z
(like foldLeft
). Those intermediate results are then combined by using combop
(like fold
). The implementation of this operation may operate on an arbitrary number of collection partitions (even 1), so combop
may be invoked an arbitrary number of times (even 0).
As an example, consider summing up the integer values of a list of chars. The initial value for the sum is 0. First, seqop
transforms each input character to an Int and adds it to the sum (of the partition). Then, combop
just needs to sum up the intermediate results of the partitions:
List('a', 'b', 'c').aggregate(0)({ (sum, ch) => sum + ch.toInt }, { (p1, p2) => p1 + p2 })
- B
the type of accumulated results
- z
the initial value for the accumulated result of the partition - this will typically be the neutral element for the
seqop
operator (e.g.Nil
for list concatenation or0
for summation) and may be evaluated more than once- seqop
an operator used to accumulate results within a partition
- combop
an associative operator used to combine results from different partitions
- Definition Classes
- TraversableOnce → GenTraversableOnce
def append(that: This): This
If this
is empty then it does nothing and returns that
. Otherwise, appends that
to this
. The append requires a full traversal of this
.
Examples:
scala> val a = LinkedList(1, 2) a: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2) scala> val b = LinkedList(1, 2) b: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2) scala> a.append(b) res0: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2, 1, 2) scala> println(a) LinkedList(1, 2, 1, 2)
scala> val a = new LinkedList[Int]() a: scala.collection.mutable.LinkedList[Int] = LinkedList() scala> val b = LinkedList(1, 2) b: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2) scala> val c = a.append(b) c: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2) scala> println(a) LinkedList()
- returns
the list after append (this is the list itself if nonempty, or list
that
if list this is empty. )
def apply(n: Int): A
Selects an element by its index in the linked list .
Example:
scala> val x = List(1, 2, 3, 4, 5) x: List[Int] = List(1, 2, 3, 4, 5) scala> x(3) res1: Int = 4
- returns
the element of this linked list at index
idx
, where0
indicates the first element.
- Definition Classes
- LinkedListLike → SeqLike → GenSeqLike
- Exceptions thrown
IndexOutOfBoundsException
ifidx
does not satisfy0 <= idx < length
.
final def asInstanceOf[T0]: T0
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at runtime, while the expression List(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.
- returns
the receiver object.
- Definition Classes
- Any
- Exceptions thrown
ClassCastException
if the receiver object is not an instance of the erasure of typeT0
.
def canEqual(that: Any): Boolean
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
- that
The object with which this iterable collection should be compared
- returns
true
, if this iterable collection can possibly equalthat
,false
otherwise. The test takes into consideration only the run-time types of objects but ignores their elements.
- Definition Classes
- IterableLike → Equals
def clone(): This
Return a clone of this list.
- returns
a
LinkedList
with the same elements.
- Definition Classes
- LinkedListLike → Cloneable → AnyRef
def collect[B](pf: PartialFunction[A, B]): LinkedList[B]
Builds a new collection by applying a partial function to all elements of this linked list
on which the function is defined.
- B
the element type of the returned collection.
- pf
the partial function which filters and maps the linked list .
- returns
a new linked list resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results. The order of the elements is preserved.
- Definition Classes
- TraversableLike → GenTraversableLike
def collectFirst[B](pf: PartialFunction[A, B]): Option[B]
Finds the first element of the traversable or iterator for which the given partial function is defined, and applies the partial function to it.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- pf
the partial function
- returns
an option value containing pf applied to the first value for which it is defined, or
None
if none exists.
- Definition Classes
- TraversableOnce
Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)
def combinations(n: Int): Iterator[This]
Iterates over combinations. A _combination_ of length n
is a subsequence of the original sequence, with the elements taken in order. Thus, "xy"
and "yy"
are both length-2 combinations of "xyy"
, but "yx"
is not. If there is more than one way to generate the same subsequence, only one will be returned.
For example, "xyyy"
has three different ways to generate "xy"
depending on whether the first, second, or third "y"
is selected. However, since all are identical, only one will be chosen. Which of the three will be taken is an implementation detail that is not defined.
- returns
An Iterator which traverses the possible n-element combinations of this sequence.
- Definition Classes
- SeqLike
"abbbc".combinations(2) = Iterator(ab, ac, bb, bc)
def contains[A1 >: A](elem: A1): Boolean
Tests whether this sequence contains a given value as an element.
Note: may not terminate for infinite-sized collections.
- elem
the element to test.
- returns
true
if this sequence has an element that is equal (as determined by==
) toelem
,false
otherwise.
- Definition Classes
- SeqLike
def containsSlice[B](that: GenSeq[B]): Boolean
Tests whether this sequence contains a given sequence as a slice.
Note: may not terminate for infinite-sized collections.
- that
the sequence to test
- returns
true
if this sequence contains a slice with the same elements asthat
, otherwisefalse
.
- Definition Classes
- SeqLike
def copyToArray(xs: Array[A], start: Int, len: Int): Unit
Copies the elements of this linked list to an array. Fills the given array xs
with at most len
elements of this linked list , starting at position start
. Copying will stop once either the end of the current linked list is reached, or the end of the target array is reached, or len
elements have been copied.
Note: will not terminate for infinite-sized collections.
- xs
the array to fill.
- start
the starting index.
- len
the maximal number of elements to copy.
- Definition Classes
- IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce
def copyToArray(xs: Array[A]): Unit
Copies the elements of this linked list to an array. Fills the given array xs
with values of this linked list . Copying will stop once either the end of the current linked list is reached, or the end of the target array is reached.
Note: will not terminate for infinite-sized collections.
- xs
the array to fill.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def copyToArray(xs: Array[A], start: Int): Unit
Copies the elements of this linked list to an array. Fills the given array xs
with values of this linked list , beginning at index start
. Copying will stop once either the end of the current linked list is reached, or the end of the target array is reached.
Note: will not terminate for infinite-sized collections.
- xs
the array to fill.
- start
the starting index.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def copyToBuffer[B >: A](dest: Buffer[B]): Unit
Copies all elements of this traversable or iterator to a buffer.
Note: will not terminate for infinite-sized collections.
- dest
The buffer to which elements are copied.
- Definition Classes
- TraversableOnce
def corresponds[B](that: GenSeq[B])(p: (A, B) ⇒ Boolean): Boolean
Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate.
- B
the type of the elements of
that
- that
the other sequence
- p
the test predicate, which relates elements from both sequences
- returns
true
if both sequences have the same length andp(x, y)
istrue
for all corresponding elementsx
of this sequence andy
ofthat
, otherwisefalse
.
- Definition Classes
- SeqLike → GenSeqLike
def count(p: (A) ⇒ Boolean): Int
Counts the number of elements in the traversable or iterator which satisfy a predicate.
- p
the predicate used to test elements.
- returns
the number of elements satisfying the predicate
p
.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def diff(that: collection.Seq[A]): LinkedList[A]
Computes the multiset difference between this linked list and another sequence.
Note: will not terminate for infinite-sized collections.
- that
the sequence of elements to remove
- returns
a new linked list which contains all elements of this linked list except some of occurrences of elements that also appear in
that
. If an element valuex
appears n times inthat
, then the first n occurrences ofx
will not form part of the result, but any following occurrences will.
- Definition Classes
- SeqLike → GenSeqLike
def distinct: This
Builds a new sequence from this sequence without any duplicate elements.
Note: will not terminate for infinite-sized collections.
- returns
A new sequence which contains the first occurrence of every element of this sequence.
- Definition Classes
- SeqLike → GenSeqLike
def drop(n: Int): This
Selects all elements except first n ones.
- n
the number of elements to drop from this linked list .
- returns
a linked list consisting of all elements of this linked list except the first
n
ones, or else the empty linked list , if this linked list has less thann
elements. Ifn
is negative, don't drop any elements.
- Definition Classes
- LinkedListLike → IterableLike → TraversableLike → GenTraversableLike
def dropRight(n: Int): This
Selects all elements except last n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
The number of elements to take
- returns
a iterable collection consisting of all elements of this iterable collection except the last
n
ones, or else the empty iterable collection, if this iterable collection has less thann
elements.
- Definition Classes
- IterableLike
def dropWhile(p: (A) ⇒ Boolean): This
Drops longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the longest suffix of this traversable collection whose first element does not satisfy the predicate
p
.
- Definition Classes
- TraversableLike → GenTraversableLike
val elem: A
def endsWith[B](that: GenSeq[B]): Boolean
Tests whether this sequence ends with the given sequence.
Note: will not terminate for infinite-sized collections.
- that
the sequence to test
- returns
true
if this sequence hasthat
as a suffix,false
otherwise.
- Definition Classes
- SeqLike → GenSeqLike
def ensuring(cond: (LinkedListLike[A, This]) ⇒ Boolean, msg: ⇒ Any): LinkedListLike[A, This]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to Ensuring[LinkedListLike[A, This]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
def ensuring(cond: (LinkedListLike[A, This]) ⇒ Boolean): LinkedListLike[A, This]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to Ensuring[LinkedListLike[A, This]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
def ensuring(cond: Boolean, msg: ⇒ Any): LinkedListLike[A, This]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to Ensuring[LinkedListLike[A, This]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
def ensuring(cond: Boolean): LinkedListLike[A, This]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to Ensuring[LinkedListLike[A, This]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
final def eq(arg0: AnyRef): Boolean
Tests whether the argument (that
) is a reference to the receiver object (this
).
The eq
method implements an equivalence relation on non-null instances of AnyRef
, and has three additional properties:
-
It is consistent: for any non-null instances
x
and y
of type AnyRef
, multiple invocations of x.eq(y)
consistently returns true
or consistently returns false
.For any non-null instance x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.
null.eq(null)
returns true
. When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
- returns
true
if the argument is a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
def equals(that: Any): Boolean
The equals method for arbitrary sequences. Compares this sequence to some other object.
- that
The object to compare the sequence to
- returns
true
ifthat
is a sequence that has the same elements as this sequence in the same order,false
otherwise
- Definition Classes
- GenSeqLike → Equals → Any
def exists(p: (A) ⇒ Boolean): Boolean
Tests whether a predicate holds for at least one element of this iterable collection.
Note: may not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- returns
false
if this iterable collection is empty, otherwisetrue
if the given predicatep
holds for some of the elements of this iterable collection, otherwisefalse
- Definition Classes
- IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce
def filter(p: (A) ⇒ Boolean): This
Selects all elements of this traversable collection which satisfy a predicate.
- p
the predicate used to test elements.
- returns
a new traversable collection consisting of all elements of this traversable collection that satisfy the given predicate
p
. The order of the elements is preserved.
- Definition Classes
- TraversableLike → GenTraversableLike
def filterNot(p: (A) ⇒ Boolean): This
Selects all elements of this traversable collection which do not satisfy a predicate.
- p
the predicate used to test elements.
- returns
a new traversable collection consisting of all elements of this traversable collection that do not satisfy the given predicate
p
. The order of the elements is preserved.
- Definition Classes
- TraversableLike → GenTraversableLike
def finalize(): Unit
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the finalize
method is invoked, as well as the interaction between finalize
and non-local returns and exceptions, are all platform dependent.
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- Note
not specified by SLS as a member of AnyRef
def find(p: (A) ⇒ Boolean): Option[A]
Finds the first element of the iterable collection satisfying a predicate, if any.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
the predicate used to test elements.
- returns
an option value containing the first element in the iterable collection that satisfies
p
, orNone
if none exists.
- Definition Classes
- IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce
def flatMap[B](f: (A) ⇒ GenTraversableOnce[B]): LinkedList[B]
Builds a new collection by applying a function to all elements of this linked list
and using the elements of the resulting collections.
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of linked list . This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet) // lettersOf will return a Set[Char], not a Seq def lettersOf(words: Seq[String]) = words.toSet flatMap (word => word.toSeq) // xs will be an Iterable[Int] val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2) // ys will be a Map[Int, Int] val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
- B
the element type of the returned collection.
- f
the function to apply to each element.
- returns
a new linked list resulting from applying the given collection-valued function
f
to each element of this linked list and concatenating the results.
- Definition Classes
- TraversableLike → GenTraversableLike → FilterMonadic
def fold[A1 >: A](z: A1)(op: (A1, A1) ⇒ A1): A1
Folds the elements of this traversable or iterator using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
Note: will not terminate for infinite-sized collections.
- A1
a type parameter for the binary operator, a supertype of
A
.- z
a neutral element for the fold operation; may be added to the result an arbitrary number of times, and must not change the result (e.g.,
Nil
for list concatenation, 0 for addition, or 1 for multiplication).- op
a binary operator that must be associative.
- returns
the result of applying the fold operator
op
between all the elements andz
, orz
if this traversable or iterator is empty.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def foldLeft[B](z: B)(op: (B, A) ⇒ B): B
Applies a binary operator to a start value and all elements of this traversable or iterator, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- z
the start value.
- op
the binary operator.
- returns
-
the result of inserting
op
between consecutive elements of this traversable or iterator, going left to right with the start valuez
on the left:op(...op(z, x_1), x_2, ..., x_n)
where
x1, ..., xn
are the elements of this traversable or iterator. Returnsz
if this traversable or iterator is empty.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def foldRight[B](z: B)(op: (A, B) ⇒ B): B
Applies a binary operator to all elements of this iterable collection and a start value, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- B
the result type of the binary operator.
- z
the start value.
- op
the binary operator.
- returns
-
the result of inserting
op
between consecutive elements of this iterable collection, going right to left with the start valuez
on the right:op(x_1, op(x_2, ... op(x_n, z)...))
where
x1, ..., xn
are the elements of this iterable collection. Returnsz
if this iterable collection is empty.
- Definition Classes
- IterableLike → TraversableOnce → GenTraversableOnce
def forall(p: (A) ⇒ Boolean): Boolean
Tests whether a predicate holds for all elements of this iterable collection.
Note: may not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- returns
true
if this iterable collection is empty or the given predicatep
holds for all elements of this iterable collection, otherwisefalse
.
- Definition Classes
- IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce
def foreach(f: (A) ⇒ Unit): Unit
Applies a function f
to all elements of this linked list .
Note: this method underlies the implementation of most other bulk operations. Subclasses should re-implement this method if a more efficient implementation exists.
- f
the function that is applied for its side-effect to every element. The result of function
f
is discarded.
- Definition Classes
- LinkedListLike → IterableLike → TraversableLike → GenTraversableLike → TraversableOnce → GenTraversableOnce → FilterMonadic
def formatted(fmtstr: String): String
Returns string formatted according to given format
string. Format strings are as for String.format
(@see java.lang.String.format).
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to StringFormat[LinkedListLike[A, This]] performed by method StringFormat in scala.Predef.
- Definition Classes
- StringFormat
- Annotations
- @inline()
def get(n: Int): Option[A]
final def getClass(): Class[_]
Returns the runtime class representation of the object.
- returns
a class object corresponding to the runtime type of the receiver.
def groupBy[K](f: (A) ⇒ K): immutable.Map[K, This]
Partitions this traversable collection into a map of traversable collections according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new traversable collection.
- K
the type of keys returned by the discriminator function.
- f
the discriminator function.
- returns
-
A map from keys to traversable collections such that the following invariant holds:
(xs groupBy f)(k) = xs filter (x => f(x) == k)
That is, every key
k
is bound to a traversable collection of those elementsx
for whichf(x)
equalsk
.
- Definition Classes
- TraversableLike → GenTraversableLike
def grouped(size: Int): Iterator[This]
Partitions elements in fixed size iterable collections.
- size
the number of elements per group
- returns
An iterator producing iterable collections of size
size
, except the last will be less than sizesize
if the elements don't divide evenly.
- Definition Classes
- IterableLike
- See also
scala.collection.Iterator, method
grouped
def hasDefiniteSize: Boolean
Tests whether this traversable collection is known to have a finite size. All strict collections are known to have finite size. For a non-strict collection such as Stream
, the predicate returns true
if all elements have been computed. It returns false
if the stream is not yet evaluated to the end. Non-empty Iterators usually return false
even if they were created from a collection with a known finite size.
Note: many collection methods will not work on collections of infinite sizes. The typical failure mode is an infinite loop. These methods always attempt a traversal without checking first that hasDefiniteSize
returns true
. However, checking hasDefiniteSize
can provide an assurance that size is well-defined and non-termination is not a concern.
- returns
true
if this collection is known to have finite size,false
otherwise.
- Definition Classes
- TraversableLike → TraversableOnce → GenTraversableOnce
def hashCode(): Int
Hashcodes for GenSeq produce a value from the hashcodes of all the elements of the general sequence.
- returns
the hash code value for this object.
- Definition Classes
- GenSeqLike → Any
def head: A
Selects the first element of this linked list .
- returns
the first element of this linked list .
- Definition Classes
- LinkedListLike → IterableLike → TraversableLike → GenTraversableLike
- Exceptions thrown
NoSuchElementException
if the linked list is empty.
def headOption: Option[A]
Optionally selects the first element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the first element of this traversable collection if it is nonempty,
None
if it is empty.
- Definition Classes
- TraversableLike → GenTraversableLike
def indexOf(elem: A, from: Int): Int
Finds index of first occurrence of some value in this linked list after or at some start index.
Note: may not terminate for infinite-sized collections.
- elem
the element value to search for.
- from
the start index
- returns
the index
>= from
of the first element of this linked list that is equal (as determined by==
) toelem
, or-1
, if none exists.
- Definition Classes
- GenSeqLike
def indexOf(elem: A): Int
Finds index of first occurrence of some value in this linked list .
Note: may not terminate for infinite-sized collections.
- elem
the element value to search for.
- returns
the index of the first element of this linked list that is equal (as determined by
==
) toelem
, or-1
, if none exists.
- Definition Classes
- GenSeqLike
def indexOfSlice[B >: A](that: GenSeq[B], from: Int): Int
Finds first index after or at a start index where this sequence contains a given sequence as a slice.
Note: may not terminate for infinite-sized collections.
- that
the sequence to test
- from
the start index
- returns
the first index
>= from
such that the elements of this sequence starting at this index match the elements of sequencethat
, or-1
of no such subsequence exists.
- Definition Classes
- SeqLike
def indexOfSlice[B >: A](that: GenSeq[B]): Int
Finds first index where this sequence contains a given sequence as a slice.
Note: may not terminate for infinite-sized collections.
- that
the sequence to test
- returns
the first index such that the elements of this sequence starting at this index match the elements of sequence
that
, or-1
of no such subsequence exists.
- Definition Classes
- SeqLike
def indexWhere(p: (A) ⇒ Boolean, from: Int): Int
Finds index of the first element satisfying some predicate after or at some start index.
Note: may not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- from
the start index
- returns
the index
>= from
of the first element of this sequence that satisfies the predicatep
, or-1
, if none exists.
- Definition Classes
- SeqLike → GenSeqLike
def indexWhere(p: (A) ⇒ Boolean): Int
Finds index of first element satisfying some predicate.
Note: may not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- returns
the index of the first element of this general sequence that satisfies the predicate
p
, or-1
, if none exists.
- Definition Classes
- GenSeqLike
def indices: immutable.Range
Produces the range of all indices of this sequence.
- returns
a
Range
value from0
to one less than the length of this sequence.
- Definition Classes
- SeqLike
def init: This
Selects all elements except the last.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
a traversable collection consisting of all elements of this traversable collection except the last one.
- Definition Classes
- TraversableLike → GenTraversableLike
- Exceptions thrown
UnsupportedOperationException
if the traversable collection is empty.
def inits: Iterator[This]
Iterates over the inits of this traversable collection. The first value will be this traversable collection and the final one will be an empty traversable collection, with the intervening values the results of successive applications of init
.
- returns
an iterator over all the inits of this traversable collection
- Definition Classes
- TraversableLike
List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)
def insert(that: This): Unit
Insert linked list that
at current position of this linked list
- Note
this linked list must not be empty
def intersect(that: collection.Seq[A]): LinkedList[A]
Computes the multiset intersection between this linked list and another sequence.
Note: may not terminate for infinite-sized collections.
- that
the sequence of elements to intersect with.
- returns
a new linked list which contains all elements of this linked list which also appear in
that
. If an element valuex
appears n times inthat
, then the first n occurrences ofx
will be retained in the result, but any following occurrences will be omitted.
- Definition Classes
- SeqLike → GenSeqLike
def isDefinedAt(idx: Int): Boolean
Tests whether this general sequence contains given index.
The implementations of methods apply
and isDefinedAt
turn a Seq[A]
into a PartialFunction[Int, A]
.
- idx
the index to test
- returns
true
if this general sequence contains an element at positionidx
,false
otherwise.
- Definition Classes
- GenSeqLike
def isEmpty: Boolean
Tests whether this linked list is empty.
- returns
true
if the linked list contain no elements,false
otherwise.
- Definition Classes
- LinkedListLike → SeqLike → IterableLike → TraversableLike → TraversableOnce → GenTraversableOnce
final def isInstanceOf[T0]: Boolean
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics. Therefore the expression 1.isInstanceOf[String]
will return false
, while the expression List(1).isInstanceOf[List[String]]
will return true
. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the specified type.
- returns
true
if the receiver object is an instance of erasure of typeT0
;false
otherwise.
- Definition Classes
- Any
final def isTraversableAgain: Boolean
Tests whether this traversable collection can be repeatedly traversed.
- returns
true
- Definition Classes
- TraversableLike → GenTraversableLike → GenTraversableOnce
def iterator: Iterator[A]
Creates a new iterator over all elements contained in this iterable object.
- returns
the new iterator
- Definition Classes
- LinkedListLike → IterableLike → GenIterableLike
def last: A
Selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
The last element of this traversable collection.
- Definition Classes
- TraversableLike → GenTraversableLike
- Exceptions thrown
NoSuchElementException
If the traversable collection is empty.
def lastIndexOf(elem: A, end: Int): Int
Finds index of last occurrence of some value in this linked list before or at a given end index.
- elem
the element value to search for.
- end
the end index.
- returns
the index
<= end
of the last element of this linked list that is equal (as determined by==
) toelem
, or-1
, if none exists.
- Definition Classes
- GenSeqLike
def lastIndexOf(elem: A): Int
Finds index of last occurrence of some value in this linked list .
Note: will not terminate for infinite-sized collections.
- elem
the element value to search for.
- returns
the index of the last element of this linked list that is equal (as determined by
==
) toelem
, or-1
, if none exists.
- Definition Classes
- GenSeqLike
def lastIndexOfSlice[B >: A](that: GenSeq[B], end: Int): Int
Finds last index before or at a given end index where this sequence contains a given sequence as a slice.
- that
the sequence to test
- end
the end index
- returns
the last index
<= end
such that the elements of this sequence starting at this index match the elements of sequencethat
, or-1
of no such subsequence exists.
- Definition Classes
- SeqLike
def lastIndexOfSlice[B >: A](that: GenSeq[B]): Int
Finds last index where this sequence contains a given sequence as a slice.
Note: will not terminate for infinite-sized collections.
- that
the sequence to test
- returns
the last index such that the elements of this sequence starting a this index match the elements of sequence
that
, or-1
of no such subsequence exists.
- Definition Classes
- SeqLike
def lastIndexWhere(p: (A) ⇒ Boolean, end: Int): Int
Finds index of last element satisfying some predicate before or at given end index.
- p
the predicate used to test elements.
- returns
the index
<= end
of the last element of this sequence that satisfies the predicatep
, or-1
, if none exists.
- Definition Classes
- SeqLike → GenSeqLike
def lastIndexWhere(p: (A) ⇒ Boolean): Int
Finds index of last element satisfying some predicate.
Note: will not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- returns
the index of the last element of this general sequence that satisfies the predicate
p
, or-1
, if none exists.
- Definition Classes
- GenSeqLike
def lastOption: Option[A]
Optionally selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the last element of this traversable collection$ if it is nonempty,
None
if it is empty.
- Definition Classes
- TraversableLike → GenTraversableLike
def length: Int
Determines the length of this linked list by traversing and counting every node.
- returns
the number of elements in this linked list .
- Definition Classes
- LinkedListLike → SeqLike → GenSeqLike
def lengthCompare(len: Int): Int
Compares the length of this sequence to a test value.
- len
the test value that gets compared with the length.
- returns
-
A value
x
wherex < 0 if this.length < len x == 0 if this.length == len x > 0 if this.length > len
The method as implemented here does not call
length
directly; its running time isO(length min len)
instead ofO(length)
. The method should be overwritten if computinglength
is cheap.
- Definition Classes
- SeqLike
def map[B](f: (A) ⇒ B): LinkedList[B]
Builds a new collection by applying a function to all elements of this linked list .
- B
the element type of the returned collection.
- f
the function to apply to each element.
- returns
a new linked list resulting from applying the given function
f
to each element of this linked list and collecting the results.
- Definition Classes
- TraversableLike → GenTraversableLike → FilterMonadic
def max: A
Finds the largest element.
- returns
the largest element of this linked list .
- Definition Classes
- TraversableOnce → GenTraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this linked list is empty.
def maxBy[B](f: (A) ⇒ B): A
Finds the first element which yields the largest value measured by function f.
- B
The result type of the function f.
- f
The measuring function.
- returns
the first element of this linked list with the largest value measured by function f.
- Definition Classes
- TraversableOnce → GenTraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this linked list is empty.
def min: A
Finds the smallest element.
- returns
the smallest element of this linked list
- Definition Classes
- TraversableOnce → GenTraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this linked list is empty.
def minBy[B](f: (A) ⇒ B): A
Finds the first element which yields the smallest value measured by function f.
- B
The result type of the function f.
- f
The measuring function.
- returns
the first element of this linked list with the smallest value measured by function f.
- Definition Classes
- TraversableOnce → GenTraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this linked list is empty.
def mkString: String
Displays all elements of this traversable or iterator in a string.
- returns
a string representation of this traversable or iterator. In the resulting string the string representations (w.r.t. the method
toString
) of all elements of this traversable or iterator follow each other without any separator string.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def mkString(sep: String): String
Displays all elements of this traversable or iterator in a string using a separator string.
- sep
the separator string.
- returns
a string representation of this traversable or iterator. In the resulting string the string representations (w.r.t. the method
toString
) of all elements of this traversable or iterator are separated by the stringsep
.
- Definition Classes
- TraversableOnce → GenTraversableOnce
List(1, 2, 3).mkString("|") = "1|2|3"
def mkString(start: String, sep: String, end: String): String
Displays all elements of this traversable or iterator in a string using start, end, and separator strings.
- start
the starting string.
- sep
the separator string.
- end
the ending string.
- returns
a string representation of this traversable or iterator. The resulting string begins with the string
start
and ends with the stringend
. Inside, the string representations (w.r.t. the methodtoString
) of all elements of this traversable or iterator are separated by the stringsep
.
- Definition Classes
- TraversableOnce → GenTraversableOnce
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
final def ne(arg0: AnyRef): Boolean
Equivalent to !(this eq that)
.
- returns
true
if the argument is not a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
val next: This
def nonEmpty: Boolean
Tests whether the traversable or iterator is not empty.
- returns
true
if the traversable or iterator contains at least one element,false
otherwise.
- Definition Classes
- TraversableOnce → GenTraversableOnce
final def notify(): Unit
Wakes up a single thread that is waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
final def notifyAll(): Unit
Wakes up all threads that are waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
def padTo(len: Int, elem: A): LinkedList[A]
A copy of this linked list with an element value appended until a given target length is reached.
- len
the target length
- elem
the padding value
- returns
a new linked list consisting of all elements of this linked list followed by the minimal number of occurrences of
elem
so that the resulting linked list has a length of at leastlen
.
- Definition Classes
- SeqLike → GenSeqLike
def par: ParSeq[A]
Returns a parallel implementation of this collection.
For most collection types, this method creates a new parallel collection by copying all the elements. For these collection, par
takes linear time. Mutable collections in this category do not produce a mutable parallel collection that has the same underlying dataset, so changes in one collection will not be reflected in the other one.
Specific collections (e.g. ParArray
or mutable.ParHashMap
) override this default behaviour by creating a parallel collection which shares the same underlying dataset. For these collections, par
takes constant or sublinear time.
All parallel collections return a reference to themselves.
- returns
a parallel implementation of this collection
- Definition Classes
- Parallelizable
def parCombiner: Combiner[A, ParSeq[A]]
The default par
implementation uses the combiner provided by this method to create a new parallel collection.
- returns
a combiner for the parallel collection of type
ParRepr
- Attributes
- protected[this]
- Definition Classes
- SeqLike → SeqLike → TraversableLike → Parallelizable
def partition(p: (A) ⇒ Boolean): (This, This)
Partitions this traversable collection in two traversable collections according to a predicate.
- p
the predicate on which to partition.
- returns
a pair of traversable collections: the first traversable collection consists of all elements that satisfy the predicate
p
and the second traversable collection consists of all elements that don't. The relative order of the elements in the resulting traversable collections is the same as in the original traversable collection.
- Definition Classes
- TraversableLike → GenTraversableLike
def patch(from: Int, that: GenSeq[A], replaced: Int): LinkedList[A]
Produces a new linked list where a slice of elements in this linked list is replaced by another sequence.
- from
the index of the first replaced element
- replaced
the number of elements to drop in the original linked list
- returns
a new linked list consisting of all elements of this linked list except that
replaced
elements starting fromfrom
are replaced bypatch
.
- Definition Classes
- SeqLike → GenSeqLike
def permutations: Iterator[This]
Iterates over distinct permutations.
- returns
An Iterator which traverses the distinct permutations of this sequence.
- Definition Classes
- SeqLike
"abb".permutations = Iterator(abb, bab, bba)
def prefixLength(p: (A) ⇒ Boolean): Int
Returns the length of the longest prefix whose elements all satisfy some predicate.
Note: may not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- returns
the length of the longest prefix of this general sequence such that every element of the segment satisfies the predicate
p
.
- Definition Classes
- GenSeqLike
def product: A
Multiplies up the elements of this collection.
- returns
the product of all elements in this linked list of numbers of type
Int
. Instead ofInt
, any other typeT
with an implicitNumeric[T]
implementation can be used as element type of the linked list and as result type ofproduct
. Examples of such types are:Long
,Float
,Double
,BigInt
.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def reduce[A1 >: A](op: (A1, A1) ⇒ A1): A1
Reduces the elements of this traversable or iterator using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
- A1
A type parameter for the binary operator, a supertype of
A
.- op
A binary operator that must be associative.
- returns
The result of applying reduce operator
op
between all the elements if the traversable or iterator is nonempty.
- Definition Classes
- TraversableOnce → GenTraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this traversable or iterator is empty.
def reduceLeft[B >: A](op: (B, A) ⇒ B): B
Applies a binary operator to all elements of this traversable or iterator, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
-
the result of inserting
op
between consecutive elements of this traversable or iterator, going left to right:op( op( ... op(x_1, x_2) ..., x_{n-1}), x_n)
where
x1, ..., xn
are the elements of this traversable or iterator.
- Definition Classes
- TraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this traversable or iterator is empty.
def reduceLeftOption[B >: A](op: (B, A) ⇒ B): Option[B]
Optionally applies a binary operator to all elements of this traversable or iterator, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
an option value containing the result of
reduceLeft(op)
if this traversable or iterator is nonempty,None
otherwise.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def reduceOption[A1 >: A](op: (A1, A1) ⇒ A1): Option[A1]
Reduces the elements of this traversable or iterator, if any, using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
- A1
A type parameter for the binary operator, a supertype of
A
.- op
A binary operator that must be associative.
- returns
An option value containing result of applying reduce operator
op
between all the elements if the collection is nonempty, andNone
otherwise.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def reduceRight[B >: A](op: (A, B) ⇒ B): B
Applies a binary operator to all elements of this iterable collection, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
-
the result of inserting
op
between consecutive elements of this iterable collection, going right to left:op(x_1, op(x_2, ..., op(x_{n-1}, x_n)...))
where
x1, ..., xn
are the elements of this iterable collection.
- Definition Classes
- IterableLike → TraversableOnce → GenTraversableOnce
- Exceptions thrown
UnsupportedOperationException
if this iterable collection is empty.
def reduceRightOption[B >: A](op: (A, B) ⇒ B): Option[B]
Optionally applies a binary operator to all elements of this traversable or iterator, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
an option value containing the result of
reduceRight(op)
if this traversable or iterator is nonempty,None
otherwise.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def repr: This
The collection of type traversable collection underlying this TraversableLike
object. By default this is implemented as the TraversableLike
object itself, but this can be overridden.
- Definition Classes
- TraversableLike → GenTraversableLike
def reverse: This
Returns new sequence with elements in reversed order.
Note: will not terminate for infinite-sized collections.
- returns
A new sequence with all elements of this sequence in reversed order.
- Definition Classes
- SeqLike → GenSeqLike
def reverseIterator: Iterator[A]
An iterator yielding elements in reversed order.
Note: will not terminate for infinite-sized collections.
Note: xs.reverseIterator
is the same as xs.reverse.iterator
but might be more efficient.
- returns
an iterator yielding the elements of this sequence in reversed order
- Definition Classes
- SeqLike
def reverseMap[B](f: (A) ⇒ B): LinkedList[B]
Builds a new collection by applying a function to all elements of this linked list and collecting the results in reversed order.
Note: will not terminate for infinite-sized collections.
Note: xs.reverseMap(f)
is the same as xs.reverse.map(f)
but might be more efficient.
- B
the element type of the returned collection.
- f
the function to apply to each element.
- returns
a new linked list resulting from applying the given function
f
to each element of this linked list and collecting the results in reversed order.
- Definition Classes
- SeqLike → GenSeqLike
def reversed: List[A]
- Attributes
- protected[this]
- Definition Classes
- TraversableOnce
def sameElements(that: GenIterable[A]): Boolean
Checks if the other iterable collection contains the same elements in the same order as this linked list .
Note: will not terminate for infinite-sized collections.
- that
the collection to compare with.
- returns
true
, if both collections contain the same elements in the same order,false
otherwise.
- Definition Classes
- IterableLike → GenIterableLike
def scan[B >: A, That](z: B)(op: (B, B) ⇒ B)(implicit cbf: CanBuildFrom[This, B, That]): That
Computes a prefix scan of the elements of the collection.
Note: The neutral element z
may be applied more than once.
- B
element type of the resulting collection
- That
type of the resulting collection
- z
neutral element for the operator
op
- op
the associative operator for the scan
- cbf
combiner factory which provides a combiner
- returns
a new traversable collection containing the prefix scan of the elements in this traversable collection
- Definition Classes
- TraversableLike → GenTraversableLike
def scanLeft[B, That](z: B)(op: (B, A) ⇒ B)(implicit bf: CanBuildFrom[This, B, That]): That
Produces a collection containing cumulative results of applying the operator going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- B
the type of the elements in the resulting collection
- That
the actual type of the resulting collection
- z
the initial value
- op
the binary operator applied to the intermediate result and the element
- bf
an implicit value of class
CanBuildFrom
which determines the result classThat
from the current representation typeRepr
and the new element typeB
.- returns
collection with intermediate results
- Definition Classes
- TraversableLike → GenTraversableLike
def scanRight[B, That](z: B)(op: (A, B) ⇒ B)(implicit bf: CanBuildFrom[This, B, That]): That
Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
- B
the type of the elements in the resulting collection
- That
the actual type of the resulting collection
- z
the initial value
- op
the binary operator applied to the intermediate result and the element
- bf
an implicit value of class
CanBuildFrom
which determines the result classThat
from the current representation typeRepr
and the new element typeB
.- returns
collection with intermediate results
- Definition Classes
- TraversableLike → GenTraversableLike
- Annotations
- @migration
- Migration
(Changed in version 2.9.0) The behavior of
scanRight
has changed. The previous behavior can be reproduced with scanRight.reverse.
def segmentLength(p: (A) ⇒ Boolean, from: Int): Int
Computes length of longest segment whose elements all satisfy some predicate.
Note: may not terminate for infinite-sized collections.
- p
the predicate used to test elements.
- from
the index where the search starts.
- returns
the length of the longest segment of this sequence starting from index
from
such that every element of the segment satisfies the predicatep
.
- Definition Classes
- SeqLike → GenSeqLike
def size: Int
The size of this sequence, equivalent to length
.
Note: will not terminate for infinite-sized collections.
- returns
the number of elements in this sequence.
- Definition Classes
- SeqLike → GenTraversableLike → TraversableOnce → GenTraversableOnce
def sizeHintIfCheap: Int
The size of this collection or iterator, if it can be cheaply computed
- returns
the number of elements in this collection or iterator, or -1 if the size cannot be determined cheaply
- Attributes
- protected[collection]
- Definition Classes
- GenTraversableOnce
def slice(from: Int, until: Int): This
Selects an interval of elements. The returned collection is made up of all elements x
which satisfy the invariant:
from <= indexOf(x) < until
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
a iterable collection containing the elements greater than or equal to index
from
extending up to (but not including) indexuntil
of this iterable collection.
- Definition Classes
- IterableLike → TraversableLike → GenTraversableLike
def sliding(size: Int, step: Int): Iterator[This]
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
- size
the number of elements per group
- step
the distance between the first elements of successive groups
- returns
An iterator producing iterable collections of size
size
, except the last element (which may be the only element) will be truncated if there are fewer thansize
elements remaining to be grouped.
- Definition Classes
- IterableLike
- See also
scala.collection.Iterator, method
sliding
def sliding(size: Int): Iterator[This]
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped
.) The "sliding window" step is set to one.
- size
the number of elements per group
- returns
An iterator producing iterable collections of size
size
, except the last element (which may be the only element) will be truncated if there are fewer thansize
elements remaining to be grouped.
- Definition Classes
- IterableLike
- See also
scala.collection.Iterator, method
sliding
def sortBy[B](f: (A) ⇒ B)(implicit ord: math.Ordering[B]): This
Sorts this Seq
according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.
- B
the target type of the transformation
f
, and the type where the orderingord
is defined.- f
the transformation function mapping elements to some other domain
B
.- ord
the ordering assumed on domain
B
.- returns
a sequence consisting of the elements of this sequence sorted according to the ordering where
x < y
iford.lt(f(x), f(y))
.
- Definition Classes
- SeqLike
- See also
scala.math.Ordering Note: will not terminate for infinite-sized collections.
val words = "The quick brown fox jumped over the lazy dog".split(' ') // this works because scala.Ordering will implicitly provide an Ordering[Tuple2[Int, Char]] words.sortBy(x => (x.length, x.head)) res0: Array[String] = Array(The, dog, fox, the, lazy, over, brown, quick, jumped)
def sortWith(lt: (A, A) ⇒ Boolean): This
Sorts this sequence according to a comparison function.
Note: will not terminate for infinite-sized collections.
The sort is stable. That is, elements that are equal (as determined by lt
) appear in the same order in the sorted sequence as in the original.
- lt
the comparison function which tests whether its first argument precedes its second argument in the desired ordering.
- returns
a sequence consisting of the elements of this sequence sorted according to the comparison function
lt
.
- Definition Classes
- SeqLike
List("Steve", "Tom", "John", "Bob").sortWith(_.compareTo(_) < 0) = List("Bob", "John", "Steve", "Tom")
def sorted[B >: A](implicit ord: math.Ordering[B]): This
Sorts this sequence according to an Ordering.
The sort is stable. That is, elements that are equal (as determined by lt
) appear in the same order in the sorted sequence as in the original.
- ord
the ordering to be used to compare elements.
- returns
a sequence consisting of the elements of this sequence sorted according to the ordering
ord
.
- Definition Classes
- SeqLike
- See also
def span(p: (A) ⇒ Boolean): (This, This)
Splits this traversable collection into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than) (c takeWhile p, c dropWhile p)
, provided the evaluation of the predicate p
does not cause any side-effects.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
a pair consisting of the longest prefix of this traversable collection whose elements all satisfy
p
, and the rest of this traversable collection.
- Definition Classes
- TraversableLike → GenTraversableLike
def splitAt(n: Int): (This, This)
Splits this traversable collection into two at a given position. Note: c splitAt n
is equivalent to (but possibly more efficient than) (c take n, c drop n)
.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
the position at which to split.
- returns
a pair of traversable collections consisting of the first
n
elements of this traversable collection, and the other elements.
- Definition Classes
- TraversableLike → GenTraversableLike
def startsWith[B](that: GenSeq[B], offset: Int): Boolean
Tests whether this sequence contains the given sequence at a given index.
Note: If the both the receiver object this
and the argument that
are infinite sequences this method may not terminate.
- that
the sequence to test
- offset
the index where the sequence is searched.
- returns
true
if the sequencethat
is contained in this sequence at indexoffset
, otherwisefalse
.
- Definition Classes
- SeqLike → GenSeqLike
def startsWith[B](that: GenSeq[B]): Boolean
Tests whether this general sequence starts with the given sequence.
- that
the sequence to test
- returns
true
if this collection hasthat
as a prefix,false
otherwise.
- Definition Classes
- GenSeqLike
def stringPrefix: String
Defines the prefix of this object's toString
representation.
- returns
a string representation which starts the result of
toString
applied to this traversable collection. By default the string prefix is the simple name of the collection class traversable collection.
- Definition Classes
- TraversableLike → GenTraversableLike
def sum: A
Sums up the elements of this collection.
- returns
the sum of all elements in this linked list of numbers of type
Int
. Instead ofInt
, any other typeT
with an implicitNumeric[T]
implementation can be used as element type of the linked list and as result type ofsum
. Examples of such types are:Long
,Float
,Double
,BigInt
.
- Definition Classes
- TraversableOnce → GenTraversableOnce
final def synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
def tail: This
Selects all elements except the first.
- returns
a linked list consisting of all elements of this linked list except the first one.
- Definition Classes
- LinkedListLike → TraversableLike → GenTraversableLike
- Exceptions thrown
java.lang.UnsupportedOperationException
if the linked list is empty.
def tails: Iterator[This]
Iterates over the tails of this traversable collection. The first value will be this traversable collection and the final one will be an empty traversable collection, with the intervening values the results of successive applications of tail
.
- returns
an iterator over all the tails of this traversable collection
- Definition Classes
- TraversableLike
List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)
def take(n: Int): This
Selects first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
the number of elements to take from this iterable collection.
- returns
a iterable collection consisting only of the first
n
elements of this iterable collection, or else the whole iterable collection, if it has less thann
elements. Ifn
is negative, returns an empty iterable collection.
- Definition Classes
- IterableLike → TraversableLike → GenTraversableLike
def takeRight(n: Int): This
Selects last n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
the number of elements to take
- returns
a iterable collection consisting only of the last
n
elements of this iterable collection, or else the whole iterable collection, if it has less thann
elements.
- Definition Classes
- IterableLike
def takeWhile(p: (A) ⇒ Boolean): This
Takes longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the longest prefix of this iterable collection whose elements all satisfy the predicate
p
.
- Definition Classes
- IterableLike → TraversableLike → GenTraversableLike
def thisCollection: collection.Seq[A]
The underlying collection seen as an instance of
. By default this is implemented as the current collection object itself, but this can be overridden. Seq
- Attributes
- protected[this]
- Definition Classes
- SeqLike → IterableLike → TraversableLike
def to[Col[_]]: Col[A]
Converts this linked list into another by copying all elements.
Note: will not terminate for infinite-sized collections.
- Col
The collection type to build.
- returns
a new collection containing all elements of this linked list .
- Definition Classes
- TraversableLike → TraversableOnce → GenTraversableOnce
def toArray: Array[A]
Converts this linked list to an array.
Note: will not terminate for infinite-sized collections.
- returns
an array containing all elements of this linked list . An
ClassTag
must be available for the element type of this linked list .
- Definition Classes
- TraversableOnce → GenTraversableOnce
def toBuffer[B >: A]: Buffer[B]
Uses the contents of this traversable or iterator to create a new mutable buffer.
Note: will not terminate for infinite-sized collections.
- returns
a buffer containing all elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def toCollection(repr: This): collection.Seq[A]
A conversion from collections of type Repr
to
objects. By default this is implemented as just a cast, but this can be overridden. Seq
- Attributes
- protected[this]
- Definition Classes
- SeqLike → IterableLike → TraversableLike
def toIndexedSeq: immutable.IndexedSeq[A]
Converts this traversable or iterator to an indexed sequence.
Note: will not terminate for infinite-sized collections.
- returns
an indexed sequence containing all elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def toIterable: collection.Iterable[A]
Returns this iterable collection as an iterable collection.
A new collection will not be built; lazy collections will stay lazy.
Note: will not terminate for infinite-sized collections.
- returns
an
Iterable
containing all elements of this iterable collection.
- Definition Classes
- IterableLike → TraversableOnce → GenTraversableOnce
def toIterator: Iterator[A]
Returns an Iterator over the elements in this iterable collection. Produces the same result as iterator
.
Note: will not terminate for infinite-sized collections.
- returns
an Iterator containing all elements of this iterable collection.
- Definition Classes
- IterableLike → TraversableLike → GenTraversableOnce
- Annotations
- @deprecatedOverriding( message = ... , since = "2.11.0" )
def toList: List[A]
Converts this traversable or iterator to a list.
Note: will not terminate for infinite-sized collections.
- returns
a list containing all elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def toMap[T, U]: collection.Map[T, U]
Converts this linked list to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
Note: will not terminate for infinite-sized collections.
- returns
a map of type
immutable.Map[T, U]
containing all key/value pairs of type(T, U)
of this linked list .
- Definition Classes
- TraversableOnce → GenTraversableOnce
def toParArray: ParArray[T]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to CollectionsHaveToParArray[LinkedListLike[A, This], T] performed by method CollectionsHaveToParArray in scala.collection.parallel. This conversion will take place only if an implicit value of type (LinkedListLike[A, This]) ⇒ GenTraversableOnce[T] is in scope.
- Definition Classes
- CollectionsHaveToParArray
def toSeq: collection.Seq[A]
Converts this sequence to a sequence.
Note: will not terminate for infinite-sized collections.
A new collection will not be built; in particular, lazy sequences will stay lazy.
- returns
a sequence containing all elements of this sequence.
- Definition Classes
- SeqLike → GenSeqLike → TraversableOnce → GenTraversableOnce
def toSet[B >: A]: immutable.Set[B]
Converts this traversable or iterator to a set.
Note: will not terminate for infinite-sized collections.
- returns
a set containing all elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def toStream: immutable.Stream[A]
Converts this iterable collection to a stream.
- returns
a stream containing all elements of this iterable collection.
- Definition Classes
- IterableLike → TraversableLike → GenTraversableOnce
def toString(): String
Converts this sequence to a string.
- returns
a string representation of this collection. By default this string consists of the
stringPrefix
of this sequence, followed by all elements separated by commas and enclosed in parentheses.
- Definition Classes
- SeqLike → TraversableLike → Any
def toTraversable: collection.Traversable[A]
Converts this traversable collection to an unspecified Traversable. Will return the same collection if this instance is already Traversable.
Note: will not terminate for infinite-sized collections.
- returns
a Traversable containing all elements of this traversable collection.
- Definition Classes
- TraversableLike → TraversableOnce → GenTraversableOnce
- Annotations
- @deprecatedOverriding( message = ... , since = "2.11.0" )
def toVector: Vector[A]
Converts this traversable or iterator to a Vector.
Note: will not terminate for infinite-sized collections.
- returns
a vector containing all elements of this traversable or iterator.
- Definition Classes
- TraversableOnce → GenTraversableOnce
def transform(f: (A) ⇒ A): LinkedListLike.this.type
Applies a transformation function to all values contained in this sequence. The transformation function produces new values from existing elements.
- f
the transformation to apply
- returns
the sequence itself.
- Definition Classes
- SeqLike
def union(that: collection.Seq[A]): LinkedList[A]
Produces a new sequence which contains all elements of this linked list and also all elements of a given sequence. xs union ys
is equivalent to xs ++ ys
.
Another way to express this is that xs union ys
computes the order-preserving multi-set union of xs
and ys
. union
is hence a counter-part of diff
and intersect
which also work on multi-sets.
Note: will not terminate for infinite-sized collections.
- that
the sequence to add.
- returns
a new linked list which contains all elements of this linked list followed by all elements of
that
.
- Definition Classes
- SeqLike → GenSeqLike
def update(n: Int, x: A): Unit
Replaces element at given index with a new value.
- Definition Classes
- LinkedListLike → SeqLike
- Exceptions thrown
IndexOutOfBoundsException
if the index is not valid.
def updated(index: Int, elem: A): LinkedList[A]
A copy of this linked list with one single replaced element.
- index
the position of the replacement
- elem
the replacing element
- returns
a copy of this linked list with the element at position
index
replaced byelem
.
- Definition Classes
- SeqLike → GenSeqLike
def view(from: Int, until: Int): SeqView[A, This]
Creates a non-strict view of a slice of this sequence.
Note: the difference between view
and slice
is that view
produces a view of the current sequence, whereas slice
produces a new sequence.
Note: view(from, to)
is equivalent to view.slice(from, to)
- from
the index of the first element of the view
- until
the index of the element following the view
- returns
a non-strict view of a slice of this sequence, starting at index
from
and extending up to (but not including) indexuntil
.
- Definition Classes
- SeqLike → IterableLike → TraversableLike
def view: SeqView[A, This]
Creates a non-strict view of this sequence.
- returns
a non-strict view of this sequence.
- Definition Classes
- SeqLike → IterableLike → TraversableLike
final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
final def wait(arg0: Long): Unit
def withFilter(p: (A) ⇒ Boolean): FilterMonadic[A, This]
Creates a non-strict filter of this traversable collection.
Note: the difference between c filter p
and c withFilter p
is that the former creates a new collection, whereas the latter only restricts the domain of subsequent map
, flatMap
, foreach
, and withFilter
operations.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
the predicate used to test elements.
- returns
an object of class
WithFilter
, which supportsmap
,flatMap
,foreach
, andwithFilter
operations. All these operations apply to those elements of this traversable collection which satisfy the predicatep
.
- Definition Classes
- TraversableLike → FilterMonadic
def zip[B](that: GenIterable[B]): LinkedList[(A, B)]
Returns a linked list formed from this linked list and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
- B
the type of the second half of the returned pairs
- that
The iterable providing the second half of each result pair
- returns
a new linked list containing pairs consisting of corresponding elements of this linked list and
that
. The length of the returned collection is the minimum of the lengths of this linked list andthat
.
- Definition Classes
- IterableLike → GenIterableLike
def zipAll[B](that: collection.Iterable[B], thisElem: A, thatElem: B): LinkedList[(A, B)]
Returns a linked list formed from this linked list and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
- B
the type of the second half of the returned pairs
- that
The iterable providing the second half of each result pair
- thisElem
the element to be used to fill up the result if this linked list is shorter than
that
.- thatElem
the element to be used to fill up the result if
that
is shorter than this linked list .- returns
a new linked list containing pairs consisting of corresponding elements of this linked list and
that
. The length of the returned collection is the maximum of the lengths of this linked list andthat
. If this linked list is shorter thanthat
,thisElem
values are used to pad the result. Ifthat
is shorter than this linked list ,thatElem
values are used to pad the result.
- Definition Classes
- IterableLike → GenIterableLike
def zipWithIndex: LinkedList[(A, Int)]
Zips this linked list with its indices.
- returns
A new linked list containing pairs consisting of all elements of this linked list paired with their index. Indices start at
0
.
- Definition Classes
- IterableLike → GenIterableLike
List("a", "b", "c").zipWithIndex = List(("a", 0), ("b", 1), ("c", 2))
def →[B](y: B): (LinkedListLike[A, This], B)
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to ArrowAssoc[LinkedListLike[A, This]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
Shadowed Implicit Value Members
def filter(p: (A) ⇒ Boolean): TraversableOnce[A]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to MonadOps[A] performed by method MonadOps in scala.collection.TraversableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(linkedListLike: MonadOps[A]).filter(p)
- Definition Classes
- MonadOps
def flatMap[B](f: (A) ⇒ GenTraversableOnce[B]): TraversableOnce[B]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to MonadOps[A] performed by method MonadOps in scala.collection.TraversableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(linkedListLike: MonadOps[A]).flatMap(f)
- Definition Classes
- MonadOps
def map[B](f: (A) ⇒ B): TraversableOnce[B]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to MonadOps[A] performed by method MonadOps in scala.collection.TraversableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(linkedListLike: MonadOps[A]).map(f)
- Definition Classes
- MonadOps
def withFilter(p: (A) ⇒ Boolean): Iterator[A]
- Implicit
- This member is added by an implicit conversion from LinkedListLike[A, This] to MonadOps[A] performed by method MonadOps in scala.collection.TraversableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(linkedListLike: MonadOps[A]).withFilter(p)
- Definition Classes
- MonadOps
© 2002-2019 EPFL, with contributions from Lightbend.
Licensed under the Apache License, Version 2.0.
https://www.scala-lang.org/api/2.12.9/scala/collection/mutable/LinkedListLike.html
This extensible class may be used as a basis for implementing linked list. Type variable
A
refers to the element type of the list, type variableThis
is used to model self types of linked lists.If the list is empty
next
must be set tothis
. The last node in every mutable linked list is empty.Examples (
_
represents no value):type of the elements contained in the linked list
the type of the actual linked list holding the elements
(Since version 2.11.0) low-level linked lists are deprecated due to idiosyncrasies in interface and incomplete features
2.8