class Enumerator::Lazy
Public Class Methods
static VALUE lazy_initialize(int argc, VALUE *argv, VALUE self) { VALUE obj, size = Qnil; VALUE generator; rb_check_arity(argc, 1, 2); if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy new without a block"); } obj = argv[0]; if (argc > 1) { size = argv[1]; } generator = generator_allocate(rb_cGenerator); rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj); enumerator_init(self, generator, sym_each, 0, 0, 0, size); rb_ivar_set(self, id_receiver, obj); return self; }
Creates a new Lazy enumerator. When the enumerator is actually enumerated (e.g. by calling force), obj
will be enumerated and each value passed to the given block. The block can yield values back using yielder
. For example, to create a method filter_map
in both lazy and non-lazy fashions:
module Enumerable def filter_map(&block) map(&block).compact end end class Enumerator::Lazy def filter_map Lazy.new(self) do |yielder, *values| result = yield *values yielder << result if result end end end (1..Float::INFINITY).lazy.filter_map{|i| i*i if i.even?}.first(5) # => [4, 16, 36, 64, 100]
Public Instance Methods
static VALUE lazy_super(int argc, VALUE *argv, VALUE lazy) { return enumerable_lazy(rb_call_super(argc, argv)); }
static VALUE lazy_map(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy map without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_map_func, 0), Qnil, lazy_receiver_size); }
static VALUE lazy_flat_map(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy flat_map without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_flat_map_func, 0), Qnil, 0); }
Returns a new lazy enumerator with the concatenated results of running block once for every element in lazy.
["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force #=> ["f", "o", "o", "b", "a", "r"]
A value x returned by block is decomposed if either of the following conditions is true:
a) <i>x</i> responds to both each and force, which means that <i>x</i> is a lazy enumerator. b) <i>x</i> is an array or responds to to_ary.
Otherwise, x is contained as-is in the return value.
[{a:1}, {b:2}].lazy.flat_map {|i| i}.force #=> [{:a=>1}, {:b=>2}]
static VALUE lazy_drop(VALUE obj, VALUE n) { long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_drop_func, n), rb_ary_new3(1, n), lazy_drop_size); }
static VALUE lazy_drop_while(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy drop_while without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_drop_while_func, 0), Qnil, 0); }
static VALUE lazy_to_enum(int argc, VALUE *argv, VALUE self) { VALUE lazy, meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } lazy = lazy_to_enum_i(self, meth, argc, argv, 0); if (rb_block_given_p()) { enumerator_ptr(lazy)->size = rb_block_proc(); } return lazy; }
Similar to Kernel#to_enum, except it returns a lazy enumerator. This makes it easy to define Enumerable methods that will naturally remain lazy if called from a lazy enumerator.
For example, continuing from the example in Kernel#to_enum:
# See Kernel#to_enum for the definition of repeat r = 1..Float::INFINITY r.repeat(2).first(5) # => [1, 1, 2, 2, 3] r.repeat(2).class # => Enumerator r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop! # works naturally on lazy enumerator: r.lazy.repeat(2).class # => Enumerator::Lazy r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9]
static VALUE lazy_select(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy select without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_select_func, 0), Qnil, 0); }
static VALUE lazy_flat_map(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy flat_map without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_flat_map_func, 0), Qnil, 0); }
Returns a new lazy enumerator with the concatenated results of running block once for every element in lazy.
["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force #=> ["f", "o", "o", "b", "a", "r"]
A value x returned by block is decomposed if either of the following conditions is true:
a) <i>x</i> responds to both each and force, which means that <i>x</i> is a lazy enumerator. b) <i>x</i> is an array or responds to to_ary.
Otherwise, x is contained as-is in the return value.
[{a:1}, {b:2}].lazy.flat_map {|i| i}.force #=> [{:a=>1}, {:b=>2}]
static VALUE lazy_grep(VALUE obj, VALUE pattern) { return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, rb_block_given_p() ? lazy_grep_iter : lazy_grep_func, pattern), rb_ary_new3(1, pattern), 0); }
static VALUE lazy_lazy(VALUE obj) { return obj; }
static VALUE lazy_map(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy map without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_map_func, 0), Qnil, lazy_receiver_size); }
static VALUE lazy_reject(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy reject without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_reject_func, 0), Qnil, 0); }
static VALUE lazy_select(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy select without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_select_func, 0), Qnil, 0); }
static VALUE lazy_super(int argc, VALUE *argv, VALUE lazy) { return enumerable_lazy(rb_call_super(argc, argv)); }
static VALUE lazy_super(int argc, VALUE *argv, VALUE lazy) { return enumerable_lazy(rb_call_super(argc, argv)); }
static VALUE lazy_super(int argc, VALUE *argv, VALUE lazy) { return enumerable_lazy(rb_call_super(argc, argv)); }
static VALUE lazy_take(VALUE obj, VALUE n) { long len = NUM2LONG(n); VALUE lazy; if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } if (len == 0) { VALUE len = INT2FIX(0); lazy = lazy_to_enum_i(obj, sym_cycle, 1, &len, 0); } else { lazy = rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_take_func, n); } return lazy_set_method(lazy, rb_ary_new3(1, n), lazy_take_size); }
static VALUE lazy_take_while(VALUE obj) { if (!rb_block_given_p()) { rb_raise(rb_eArgError, "tried to call lazy take_while without a block"); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, lazy_take_while_func, 0), Qnil, 0); }
static VALUE lazy_to_enum(int argc, VALUE *argv, VALUE self) { VALUE lazy, meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } lazy = lazy_to_enum_i(self, meth, argc, argv, 0); if (rb_block_given_p()) { enumerator_ptr(lazy)->size = rb_block_proc(); } return lazy; }
Similar to Kernel#to_enum, except it returns a lazy enumerator. This makes it easy to define Enumerable methods that will naturally remain lazy if called from a lazy enumerator.
For example, continuing from the example in Kernel#to_enum:
# See Kernel#to_enum for the definition of repeat r = 1..Float::INFINITY r.repeat(2).first(5) # => [1, 1, 2, 2, 3] r.repeat(2).class # => Enumerator r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop! # works naturally on lazy enumerator: r.lazy.repeat(2).class # => Enumerator::Lazy r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9]
static VALUE lazy_zip(int argc, VALUE *argv, VALUE obj) { VALUE ary, v; long i; rb_block_call_func *func = lazy_zip_arrays_func; if (rb_block_given_p()) { return rb_call_super(argc, argv); } ary = rb_ary_new2(argc); for (i = 0; i < argc; i++) { v = rb_check_array_type(argv[i]); if (NIL_P(v)) { for (; i < argc; i++) { if (!rb_respond_to(argv[i], id_each)) { rb_raise(rb_eTypeError, "wrong argument type %s (must respond to :each)", rb_obj_classname(argv[i])); } } ary = rb_ary_new4(argc, argv); func = lazy_zip_func; break; } rb_ary_push(ary, v); } return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj, func, ary), ary, lazy_receiver_size); }
Ruby Core © 1993–2017 Yukihiro Matsumoto
Licensed under the Ruby License.
Ruby Standard Library © contributors
Licensed under their own licenses.