Base Event Loop
Source code: Lib/asyncio/events.py
The event loop is the central execution device provided by asyncio
. It provides multiple facilities, including:
- Registering, executing and cancelling delayed calls (timeouts).
- Creating client and server transports for various kinds of communication.
- Launching subprocesses and the associated transports for communication with an external program.
- Delegating costly function calls to a pool of threads.
-
class asyncio.BaseEventLoop
-
This class is an implementation detail. It is a subclass of
AbstractEventLoop
and may be a base class of concrete event loop implementations found inasyncio
. It should not be used directly; useAbstractEventLoop
instead.BaseEventLoop
should not be subclassed by third-party code; the internal interface is not stable.
-
class asyncio.AbstractEventLoop
-
Abstract base class of event loops.
This class is not thread safe.
18.5.1.1. Run an event loop
-
AbstractEventLoop.run_forever()
-
Run until
stop()
is called. Ifstop()
is called beforerun_forever()
is called, this polls the I/O selector once with a timeout of zero, runs all callbacks scheduled in response to I/O events (and those that were already scheduled), and then exits. Ifstop()
is called whilerun_forever()
is running, this will run the current batch of callbacks and then exit. Note that callbacks scheduled by callbacks will not run in that case; they will run the next timerun_forever()
is called.Changed in version 3.5.1.
-
AbstractEventLoop.run_until_complete(future)
-
Run until the
Future
is done.If the argument is a coroutine object, it is wrapped by
ensure_future()
.Return the Future’s result, or raise its exception.
-
AbstractEventLoop.is_running()
-
Returns running status of event loop.
-
AbstractEventLoop.stop()
-
Stop running the event loop.
This causes
run_forever()
to exit at the next suitable opportunity (see there for more details).Changed in version 3.5.1.
-
AbstractEventLoop.is_closed()
-
Returns
True
if the event loop was closed.New in version 3.4.2.
-
AbstractEventLoop.close()
-
Close the event loop. The loop must not be running. Pending callbacks will be lost.
This clears the queues and shuts down the executor, but does not wait for the executor to finish.
This is idempotent and irreversible. No other methods should be called after this one.
-
coroutine AbstractEventLoop.shutdown_asyncgens()
-
Schedule all currently open asynchronous generator objects to close with an
aclose()
call. After calling this method, the event loop will issue a warning whenever a new asynchronous generator is iterated. Should be used to finalize all scheduled asynchronous generators reliably. Example:try: loop.run_forever() finally: loop.run_until_complete(loop.shutdown_asyncgens()) loop.close()
New in version 3.6.
18.5.1.2. Calls
Most asyncio
functions don’t accept keywords. If you want to pass keywords to your callback, use functools.partial()
. For example, loop.call_soon(functools.partial(print, "Hello", flush=True))
will call print("Hello", flush=True)
.
Note
functools.partial()
is better than lambda
functions, because asyncio
can inspect functools.partial()
object to display parameters in debug mode, whereas lambda
functions have a poor representation.
-
AbstractEventLoop.call_soon(callback, *args)
-
Arrange for a callback to be called as soon as possible. The callback is called after
call_soon()
returns, when control returns to the event loop.This operates as a FIFO queue, callbacks are called in the order in which they are registered. Each callback will be called exactly once.
Any positional arguments after the callback will be passed to the callback when it is called.
An instance of
asyncio.Handle
is returned, which can be used to cancel the callback.
-
AbstractEventLoop.call_soon_threadsafe(callback, *args)
-
Like
call_soon()
, but thread safe.See the concurrency and multithreading section of the documentation.
18.5.1.3. Delayed calls
The event loop has its own internal clock for computing timeouts. Which clock is used depends on the (platform-specific) event loop implementation; ideally it is a monotonic clock. This will generally be a different clock than time.time()
.
Note
Timeouts (relative delay or absolute when) should not exceed one day.
-
AbstractEventLoop.call_later(delay, callback, *args)
-
Arrange for the callback to be called after the given delay seconds (either an int or float).
An instance of
asyncio.Handle
is returned, which can be used to cancel the callback.callback will be called exactly once per call to
call_later()
. If two callbacks are scheduled for exactly the same time, it is undefined which will be called first.The optional positional args will be passed to the callback when it is called. If you want the callback to be called with some named arguments, use a closure or
functools.partial()
.
-
AbstractEventLoop.call_at(when, callback, *args)
-
Arrange for the callback to be called at the given absolute timestamp when (an int or float), using the same time reference as
AbstractEventLoop.time()
.This method’s behavior is the same as
call_later()
.An instance of
asyncio.Handle
is returned, which can be used to cancel the callback.
-
AbstractEventLoop.time()
-
Return the current time, as a
float
value, according to the event loop’s internal clock.
See also
The asyncio.sleep()
function.
18.5.1.4. Futures
-
AbstractEventLoop.create_future()
-
Create an
asyncio.Future
object attached to the loop.This is a preferred way to create futures in asyncio, as event loop implementations can provide alternative implementations of the Future class (with better performance or instrumentation).
New in version 3.5.2.
18.5.1.5. Tasks
-
AbstractEventLoop.create_task(coro)
-
Schedule the execution of a coroutine object: wrap it in a future. Return a
Task
object.Third-party event loops can use their own subclass of
Task
for interoperability. In this case, the result type is a subclass ofTask
.This method was added in Python 3.4.2. Use the
async()
function to support also older Python versions.New in version 3.4.2.
-
AbstractEventLoop.set_task_factory(factory)
-
Set a task factory that will be used by
AbstractEventLoop.create_task()
.If factory is
None
the default task factory will be set.If factory is a callable, it should have a signature matching
(loop, coro)
, where loop will be a reference to the active event loop, coro will be a coroutine object. The callable must return anasyncio.Future
compatible object.New in version 3.4.4.
-
AbstractEventLoop.get_task_factory()
-
Return a task factory, or
None
if the default one is in use.New in version 3.4.4.
18.5.1.6. Creating connections
-
coroutine AbstractEventLoop.create_connection(protocol_factory, host=None, port=None, *, ssl=None, family=0, proto=0, flags=0, sock=None, local_addr=None, server_hostname=None)
-
Create a streaming transport connection to a given Internet host and port: socket family
AF_INET
orAF_INET6
depending on host (or family if specified), socket typeSOCK_STREAM
. protocol_factory must be a callable returning a protocol instance.This method is a coroutine which will try to establish the connection in the background. When successful, the coroutine returns a
(transport, protocol)
pair.The chronological synopsis of the underlying operation is as follows:
- The connection is established, and a transport is created to represent it.
- protocol_factory is called without arguments and must return a protocol instance.
- The protocol instance is tied to the transport, and its
connection_made()
method is called. - The coroutine returns successfully with the
(transport, protocol)
pair.
The created transport is an implementation-dependent bidirectional stream.
Note
protocol_factory can be any kind of callable, not necessarily a class. For example, if you want to use a pre-created protocol instance, you can pass
lambda: my_protocol
.Options that change how the connection is created:
-
ssl: if given and not false, a SSL/TLS transport is created (by default a plain TCP transport is created). If ssl is a
ssl.SSLContext
object, this context is used to create the transport; if ssl isTrue
, a context with some unspecified default settings is used.See also
- server_hostname, is only for use together with ssl, and sets or overrides the hostname that the target server’s certificate will be matched against. By default the value of the host argument is used. If host is empty, there is no default and you must pass a value for server_hostname. If server_hostname is an empty string, hostname matching is disabled (which is a serious security risk, allowing for man-in-the-middle-attacks).
-
family, proto, flags are the optional address family, protocol and flags to be passed through to getaddrinfo() for host resolution. If given, these should all be integers from the corresponding
socket
module constants. -
sock, if given, should be an existing, already connected
socket.socket
object to be used by the transport. If sock is given, none of host, port, family, proto, flags and local_addr should be specified. -
local_addr, if given, is a
(local_host, local_port)
tuple used to bind the socket to locally. The local_host and local_port are looked up using getaddrinfo(), similarly to host and port.
Changed in version 3.5: On Windows with
ProactorEventLoop
, SSL/TLS is now supported.See also
The
open_connection()
function can be used to get a pair of (StreamReader
,StreamWriter
) instead of a protocol.
-
coroutine AbstractEventLoop.create_datagram_endpoint(protocol_factory, local_addr=None, remote_addr=None, *, family=0, proto=0, flags=0, reuse_address=None, reuse_port=None, allow_broadcast=None, sock=None)
-
Note
The parameter reuse_address is no longer supported, as using
SO_REUSEADDR
poses a significant security concern for UDP. Explicitly passingreuse_address=True
will raise an exception.When multiple processes with differing UIDs assign sockets to an indentical UDP socket address with
SO_REUSEADDR
, incoming packets can become randomly distributed among the sockets.For supported platforms, reuse_port can be used as a replacement for similar functionality. With reuse_port,
SO_REUSEPORT
is used instead, which specifically prevents processes with differing UIDs from assigning sockets to the same socket address.Create a datagram connection.
Create datagram connection: socket family
AF_INET
orAF_INET6
depending on host (or family if specified), socket typeSOCK_DGRAM
. protocol_factory must be a callable returning a protocol instance.This method is a coroutine which will try to establish the connection in the background. When successful, the coroutine returns a
(transport, protocol)
pair.Options changing how the connection is created:
-
local_addr, if given, is a
(local_host, local_port)
tuple used to bind the socket to locally. The local_host and local_port are looked up usinggetaddrinfo()
. -
remote_addr, if given, is a
(remote_host, remote_port)
tuple used to connect the socket to a remote address. The remote_host and remote_port are looked up usinggetaddrinfo()
. -
family, proto, flags are the optional address family, protocol and flags to be passed through to
getaddrinfo()
for host resolution. If given, these should all be integers from the correspondingsocket
module constants. -
reuse_port tells the kernel to allow this endpoint to be bound to the same port as other existing endpoints are bound to, so long as they all set this flag when being created. This option is not supported on Windows and some UNIX’s. If the
SO_REUSEPORT
constant is not defined then this capability is unsupported. - allow_broadcast tells the kernel to allow this endpoint to send messages to the broadcast address.
-
sock can optionally be specified in order to use a preexisting, already connected,
socket.socket
object to be used by the transport. If specified, local_addr and remote_addr should be omitted (must beNone
).
On Windows with
ProactorEventLoop
, this method is not supported.See UDP echo client protocol and UDP echo server protocol examples.
Changed in version 3.4.4: The family, proto, flags, reuse_address, reuse_port, *allow_broadcast, and sock parameters were added.
Changed in version 3.6.10: The reuse_address parameter is no longer supporter due to security concerns
-
local_addr, if given, is a
-
coroutine AbstractEventLoop.create_unix_connection(protocol_factory, path, *, ssl=None, sock=None, server_hostname=None)
-
Create UNIX connection: socket family
AF_UNIX
, socket typeSOCK_STREAM
. TheAF_UNIX
socket family is used to communicate between processes on the same machine efficiently.This method is a coroutine which will try to establish the connection in the background. When successful, the coroutine returns a
(transport, protocol)
pair.path is the name of a UNIX domain socket, and is required unless a sock parameter is specified. Abstract UNIX sockets,
str
, andbytes
paths are supported.See the
AbstractEventLoop.create_connection()
method for parameters.Availability: UNIX.
18.5.1.7. Creating listening connections
-
coroutine AbstractEventLoop.create_server(protocol_factory, host=None, port=None, *, family=socket.AF_UNSPEC, flags=socket.AI_PASSIVE, sock=None, backlog=100, ssl=None, reuse_address=None, reuse_port=None)
-
Create a TCP server (socket type
SOCK_STREAM
) bound to host and port.Return a
Server
object, itssockets
attribute contains created sockets. Use theServer.close()
method to stop the server: close listening sockets.Parameters:
- The host parameter can be a string, in that case the TCP server is bound to host and port. The host parameter can also be a sequence of strings and in that case the TCP server is bound to all hosts of the sequence. If host is an empty string or
None
, all interfaces are assumed and a list of multiple sockets will be returned (most likely one for IPv4 and another one for IPv6). -
family can be set to either
socket.AF_INET
orAF_INET6
to force the socket to use IPv4 or IPv6. If not set it will be determined from host (defaults tosocket.AF_UNSPEC
). -
flags is a bitmask for
getaddrinfo()
. -
sock can optionally be specified in order to use a preexisting socket object. If specified, host and port should be omitted (must be
None
). -
backlog is the maximum number of queued connections passed to
listen()
(defaults to 100). -
ssl can be set to an
SSLContext
to enable SSL over the accepted connections. -
reuse_address tells the kernel to reuse a local socket in TIME_WAIT state, without waiting for its natural timeout to expire. If not specified will automatically be set to
True
on UNIX. - reuse_port tells the kernel to allow this endpoint to be bound to the same port as other existing endpoints are bound to, so long as they all set this flag when being created. This option is not supported on Windows.
This method is a coroutine.
Changed in version 3.5: On Windows with
ProactorEventLoop
, SSL/TLS is now supported.See also
The function
start_server()
creates a (StreamReader
,StreamWriter
) pair and calls back a function with this pair.Changed in version 3.5.1: The host parameter can now be a sequence of strings.
- The host parameter can be a string, in that case the TCP server is bound to host and port. The host parameter can also be a sequence of strings and in that case the TCP server is bound to all hosts of the sequence. If host is an empty string or
-
coroutine AbstractEventLoop.create_unix_server(protocol_factory, path=None, *, sock=None, backlog=100, ssl=None)
-
Similar to
AbstractEventLoop.create_server()
, but specific to the socket familyAF_UNIX
.This method is a coroutine.
Availability: UNIX.
-
coroutine BaseEventLoop.connect_accepted_socket(protocol_factory, sock, *, ssl=None)
-
Handle an accepted connection.
This is used by servers that accept connections outside of asyncio but that use asyncio to handle them.
Parameters:
-
sock is a preexisting socket object returned from an
accept
call. -
ssl can be set to an
SSLContext
to enable SSL over the accepted connections.
This method is a coroutine. When completed, the coroutine returns a
(transport, protocol)
pair.New in version 3.5.3.
-
sock is a preexisting socket object returned from an
18.5.1.8. Watch file descriptors
On Windows with SelectorEventLoop
, only socket handles are supported (ex: pipe file descriptors are not supported).
On Windows with ProactorEventLoop
, these methods are not supported.
-
AbstractEventLoop.add_reader(fd, callback, *args)
-
Start watching the file descriptor for read availability and then call the callback with specified arguments.
-
AbstractEventLoop.remove_reader(fd)
-
Stop watching the file descriptor for read availability.
-
AbstractEventLoop.add_writer(fd, callback, *args)
-
Start watching the file descriptor for write availability and then call the callback with specified arguments.
-
AbstractEventLoop.remove_writer(fd)
-
Stop watching the file descriptor for write availability.
The watch a file descriptor for read events example uses the low-level AbstractEventLoop.add_reader()
method to register the file descriptor of a socket.
18.5.1.9. Low-level socket operations
-
coroutine AbstractEventLoop.sock_recv(sock, nbytes)
-
Receive data from the socket. Modeled after blocking
socket.socket.recv()
method.The return value is a bytes object representing the data received. The maximum amount of data to be received at once is specified by nbytes.
With
SelectorEventLoop
event loop, the socket sock must be non-blocking.This method is a coroutine.
-
coroutine AbstractEventLoop.sock_sendall(sock, data)
-
Send data to the socket. Modeled after blocking
socket.socket.sendall()
method.The socket must be connected to a remote socket. This method continues to send data from data until either all data has been sent or an error occurs.
None
is returned on success. On error, an exception is raised, and there is no way to determine how much data, if any, was successfully processed by the receiving end of the connection.With
SelectorEventLoop
event loop, the socket sock must be non-blocking.This method is a coroutine.
-
coroutine AbstractEventLoop.sock_connect(sock, address)
-
Connect to a remote socket at address. Modeled after blocking
socket.socket.connect()
method.With
SelectorEventLoop
event loop, the socket sock must be non-blocking.This method is a coroutine.
Changed in version 3.5.2:
address
no longer needs to be resolved.sock_connect
will try to check if the address is already resolved by callingsocket.inet_pton()
. If not,AbstractEventLoop.getaddrinfo()
will be used to resolve the address.
-
coroutine AbstractEventLoop.sock_accept(sock)
-
Accept a connection. Modeled after blocking
socket.socket.accept()
.The socket must be bound to an address and listening for connections. The return value is a pair
(conn, address)
where conn is a new socket object usable to send and receive data on the connection, and address is the address bound to the socket on the other end of the connection.The socket sock must be non-blocking.
This method is a coroutine.
See also
18.5.1.10. Resolve host name
-
coroutine AbstractEventLoop.getaddrinfo(host, port, *, family=0, type=0, proto=0, flags=0)
-
This method is a coroutine, similar to
socket.getaddrinfo()
function but non-blocking.
-
coroutine AbstractEventLoop.getnameinfo(sockaddr, flags=0)
-
This method is a coroutine, similar to
socket.getnameinfo()
function but non-blocking.
18.5.1.11. Connect pipes
On Windows with SelectorEventLoop
, these methods are not supported. Use ProactorEventLoop
to support pipes on Windows.
-
coroutine AbstractEventLoop.connect_read_pipe(protocol_factory, pipe)
-
Register read pipe in eventloop.
protocol_factory should instantiate object with
Protocol
interface. pipe is a file-like object. Return pair(transport, protocol)
, where transport supports theReadTransport
interface.With
SelectorEventLoop
event loop, the pipe is set to non-blocking mode.This method is a coroutine.
-
coroutine AbstractEventLoop.connect_write_pipe(protocol_factory, pipe)
-
Register write pipe in eventloop.
protocol_factory should instantiate object with
BaseProtocol
interface. pipe is file-like object. Return pair(transport, protocol)
, where transport supportsWriteTransport
interface.With
SelectorEventLoop
event loop, the pipe is set to non-blocking mode.This method is a coroutine.
See also
The AbstractEventLoop.subprocess_exec()
and AbstractEventLoop.subprocess_shell()
methods.
18.5.1.12. UNIX signals
Availability: UNIX only.
-
AbstractEventLoop.add_signal_handler(signum, callback, *args)
-
Add a handler for a signal.
Raise
ValueError
if the signal number is invalid or uncatchable. RaiseRuntimeError
if there is a problem setting up the handler.
-
AbstractEventLoop.remove_signal_handler(sig)
-
Remove a handler for a signal.
Return
True
if a signal handler was removed,False
if not.
See also
The signal
module.
18.5.1.13. Executor
Call a function in an Executor
(pool of threads or pool of processes). By default, an event loop uses a thread pool executor (ThreadPoolExecutor
).
-
coroutine AbstractEventLoop.run_in_executor(executor, func, *args)
-
Arrange for a func to be called in the specified executor.
The executor argument should be an
Executor
instance. The default executor is used if executor isNone
.Use functools.partial to pass keywords to the *func*.
This method is a coroutine.
Changed in version 3.5.3:
BaseEventLoop.run_in_executor()
no longer configures themax_workers
of the thread pool executor it creates, instead leaving it up to the thread pool executor (ThreadPoolExecutor
) to set the default.
-
AbstractEventLoop.set_default_executor(executor)
-
Set the default executor used by
run_in_executor()
.
18.5.1.14. Error Handling API
Allows customizing how exceptions are handled in the event loop.
-
AbstractEventLoop.set_exception_handler(handler)
-
Set handler as the new event loop exception handler.
If handler is
None
, the default exception handler will be set.If handler is a callable object, it should have a matching signature to
(loop, context)
, whereloop
will be a reference to the active event loop,context
will be adict
object (seecall_exception_handler()
documentation for details about context).
-
AbstractEventLoop.get_exception_handler()
-
Return the exception handler, or
None
if the default one is in use.New in version 3.5.2.
-
AbstractEventLoop.default_exception_handler(context)
-
Default exception handler.
This is called when an exception occurs and no exception handler is set, and can be called by a custom exception handler that wants to defer to the default behavior.
context parameter has the same meaning as in
call_exception_handler()
.
-
AbstractEventLoop.call_exception_handler(context)
-
Call the current event loop exception handler.
context is a
dict
object containing the following keys (new keys may be introduced later):- ‘message’: Error message;
- ‘exception’ (optional): Exception object;
- ‘future’ (optional):
asyncio.Future
instance; - ‘handle’ (optional):
asyncio.Handle
instance; - ‘protocol’ (optional): Protocol instance;
- ‘transport’ (optional): Transport instance;
- ‘socket’ (optional):
socket.socket
instance.
Note
Note: this method should not be overloaded in subclassed event loops. For any custom exception handling, use
set_exception_handler()
method.
18.5.1.15. Debug mode
-
AbstractEventLoop.get_debug()
-
Get the debug mode (
bool
) of the event loop.The default value is
True
if the environment variablePYTHONASYNCIODEBUG
is set to a non-empty string,False
otherwise.New in version 3.4.2.
-
AbstractEventLoop.set_debug(enabled: bool)
-
Set the debug mode of the event loop.
New in version 3.4.2.
See also
18.5.1.16. Server
-
class asyncio.Server
-
Server listening on sockets.
Object created by the
AbstractEventLoop.create_server()
method and thestart_server()
function. Don’t instantiate the class directly.-
close()
-
Stop serving: close listening sockets and set the
sockets
attribute toNone
.The sockets that represent existing incoming client connections are left open.
The server is closed asynchronously, use the
wait_closed()
coroutine to wait until the server is closed.
-
sockets
-
List of
socket.socket
objects the server is listening to, orNone
if the server is closed.
-
18.5.1.17. Handle
-
class asyncio.Handle
-
A callback wrapper object returned by
AbstractEventLoop.call_soon()
,AbstractEventLoop.call_soon_threadsafe()
,AbstractEventLoop.call_later()
, andAbstractEventLoop.call_at()
.-
cancel()
-
Cancel the call. If the callback is already canceled or executed, this method has no effect.
-
18.5.1.18. Event loop examples
18.5.1.18.1. Hello World with call_soon()
Example using the AbstractEventLoop.call_soon()
method to schedule a callback. The callback displays "Hello World"
and then stops the event loop:
import asyncio def hello_world(loop): print('Hello World') loop.stop() loop = asyncio.get_event_loop() # Schedule a call to hello_world() loop.call_soon(hello_world, loop) # Blocking call interrupted by loop.stop() loop.run_forever() loop.close()
See also
The Hello World coroutine example uses a coroutine.
18.5.1.18.2. Display the current date with call_later()
Example of callback displaying the current date every second. The callback uses the AbstractEventLoop.call_later()
method to reschedule itself during 5 seconds, and then stops the event loop:
import asyncio import datetime def display_date(end_time, loop): print(datetime.datetime.now()) if (loop.time() + 1.0) < end_time: loop.call_later(1, display_date, end_time, loop) else: loop.stop() loop = asyncio.get_event_loop() # Schedule the first call to display_date() end_time = loop.time() + 5.0 loop.call_soon(display_date, end_time, loop) # Blocking call interrupted by loop.stop() loop.run_forever() loop.close()
See also
The coroutine displaying the current date example uses a coroutine.
18.5.1.18.3. Watch a file descriptor for read events
Wait until a file descriptor received some data using the AbstractEventLoop.add_reader()
method and then close the event loop:
import asyncio try: from socket import socketpair except ImportError: from asyncio.windows_utils import socketpair # Create a pair of connected file descriptors rsock, wsock = socketpair() loop = asyncio.get_event_loop() def reader(): data = rsock.recv(100) print("Received:", data.decode()) # We are done: unregister the file descriptor loop.remove_reader(rsock) # Stop the event loop loop.stop() # Register the file descriptor for read event loop.add_reader(rsock, reader) # Simulate the reception of data from the network loop.call_soon(wsock.send, 'abc'.encode()) # Run the event loop loop.run_forever() # We are done, close sockets and the event loop rsock.close() wsock.close() loop.close()
See also
The register an open socket to wait for data using a protocol example uses a low-level protocol created by the AbstractEventLoop.create_connection()
method.
The register an open socket to wait for data using streams example uses high-level streams created by the open_connection()
function in a coroutine.
18.5.1.18.4. Set signal handlers for SIGINT and SIGTERM
Register handlers for signals SIGINT
and SIGTERM
using the AbstractEventLoop.add_signal_handler()
method:
import asyncio import functools import os import signal def ask_exit(signame): print("got signal %s: exit" % signame) loop.stop() loop = asyncio.get_event_loop() for signame in ('SIGINT', 'SIGTERM'): loop.add_signal_handler(getattr(signal, signame), functools.partial(ask_exit, signame)) print("Event loop running forever, press Ctrl+C to interrupt.") print("pid %s: send SIGINT or SIGTERM to exit." % os.getpid()) try: loop.run_forever() finally: loop.close()
This example only works on UNIX.
© 2001–2020 Python Software Foundation
Licensed under the PSF License.
https://docs.python.org/3.6/library/asyncio-eventloop.html