Working with Text Data
Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the str
attribute and generally have names matching the equivalent (scalar) built-in string methods:
In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [2]: s.str.lower() Out[2]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object In [3]: s.str.upper() Out[3]: 0 A 1 B 2 C 3 AABA 4 BACA 5 NaN 6 CABA 7 DOG 8 CAT dtype: object In [4]: s.str.len() Out[4]: 0 1.0 1 1.0 2 1.0 3 4.0 4 4.0 5 NaN 6 4.0 7 3.0 8 3.0 dtype: float64
In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank']) In [6]: idx.str.strip() Out[6]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object') In [7]: idx.str.lstrip() Out[7]: Index([u'jack', u'jill ', u'jesse ', u'frank'], dtype='object') In [8]: idx.str.rstrip() Out[8]: Index([u' jack', u'jill', u' jesse', u'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
In [9]: df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '], ...: index=range(3)) ...: In [10]: df Out[10]: Column A Column B 0 0.017428 0.039049 1 -2.240248 0.847859 2 -1.342107 0.368828
Since df.columns
is an Index object, we can use the .str
accessor
In [11]: df.columns.str.strip() Out[11]: Index([u'Column A', u'Column B'], dtype='object') In [12]: df.columns.str.lower() Out[12]: Index([u' column a ', u' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:
In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_') In [14]: df Out[14]: column_a column_b 0 0.017428 0.039049 1 -2.240248 0.847859 2 -1.342107 0.368828
Note
If you have a Series
where lots of elements are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the length of the Series
), it can be faster to convert the original Series
to one of type category
and then use .str.<method>
or .dt.<property>
on that. The performance difference comes from the fact that, for Series
of type category
, the string operations are done on the .categories
and not on each element of the Series
.
Please note that a Series
of type category
with string .categories
has some limitations in comparison of Series
of type string (e.g. you can’t add strings to each other: s + " " + s
won’t work if s
is a Series
of type category
). Also, .str
methods which operate on elements of type list
are not available on such a Series
.
Splitting and Replacing Strings
Methods like split
return a Series of lists:
In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) In [16]: s2.str.split('_') Out[16]: 0 [a, b, c] 1 [c, d, e] 2 NaN 3 [f, g, h] dtype: object
Elements in the split lists can be accessed using get
or []
notation:
In [17]: s2.str.split('_').str.get(1) Out[17]: 0 b 1 d 2 NaN 3 g dtype: object In [18]: s2.str.split('_').str[1] Out[18]: 0 b 1 d 2 NaN 3 g dtype: object
Easy to expand this to return a DataFrame using expand
.
In [19]: s2.str.split('_', expand=True) Out[19]: 0 1 2 0 a b c 1 c d e 2 NaN None None 3 f g h
It is also possible to limit the number of splits:
In [20]: s2.str.split('_', expand=True, n=1) Out[20]: 0 1 0 a b_c 1 c d_e 2 NaN None 3 f g_h
rsplit
is similar to split
except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:
In [21]: s2.str.rsplit('_', expand=True, n=1) Out[21]: 0 1 0 a_b c 1 c_d e 2 NaN None 3 f_g h
Methods like replace
and findall
take regular expressions, too:
In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', ....: '', np.nan, 'CABA', 'dog', 'cat']) ....: In [23]: s3 Out[23]: 0 A 1 B 2 C 3 Aaba 4 Baca 5 6 NaN 7 CABA 8 dog 9 cat dtype: object In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False) Out[24]: 0 A 1 B 2 C 3 XX-XX ba 4 XX-XX ca 5 6 NaN 7 XX-XX BA 8 XX-XX 9 XX-XX t dtype: object
Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $
:
# Consider the following badly formatted financial data In [25]: dollars = pd.Series(['12', '-$10', '$10,000']) # This does what you'd naively expect: In [26]: dollars.str.replace('$', '') Out[26]: 0 12 1 -10 2 10,000 dtype: object # But this doesn't: In [27]: dollars.str.replace('-$', '-') Out[27]: 0 12 1 -$10 2 $10,000 dtype: object # We need to escape the special character (for >1 len patterns) In [28]: dollars.str.replace(r'-\$', '-') Out[28]: 0 12 1 -10 2 $10,000 dtype: object
Indexing with .str
You can use []
notation to directly index by position locations. If you index past the end of the string, the result will be a NaN
.
In [29]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, ....: 'CABA', 'dog', 'cat']) ....: In [30]: s.str[0] Out[30]: 0 A 1 B 2 C 3 A 4 B 5 NaN 6 C 7 d 8 c dtype: object In [31]: s.str[1] Out[31]: 0 NaN 1 NaN 2 NaN 3 a 4 a 5 NaN 6 A 7 o 8 a dtype: object
Extracting Substrings
Extract first match in each subject (extract)
New in version 0.13.0.
Warning
In version 0.18.0, extract
gained the expand
argument. When expand=False
it returns a Series
, Index
, or DataFrame
, depending on the subject and regular expression pattern (same behavior as pre-0.18.0). When expand=True
it always returns a DataFrame
, which is more consistent and less confusing from the perspective of a user.
The extract
method accepts a regular expression with at least one capture group.
Extracting a regular expression with more than one group returns a DataFrame with one column per group.
In [32]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False) Out[32]: 0 1 0 a 1 1 b 2 2 NaN NaN
Elements that do not match return a row filled with NaN
. Thus, a Series of messy strings can be “converted” into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get()
to access tuples or re.match
objects. The dtype of the result is always object, even if no match is found and the result only contains NaN
.
Named groups like
In [33]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False) Out[33]: letter digit 0 a 1 1 b 2 2 NaN NaN
and optional groups like
In [34]: pd.Series(['a1', 'b2', '3']).str.extract('([ab])?(\d)', expand=False) Out[34]: 0 1 0 a 1 1 b 2 2 NaN 3
can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True
.
In [35]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True) Out[35]: 0 0 1 1 2 2 NaN
It returns a Series if expand=False
.
In [36]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False) Out[36]: 0 1 1 2 2 NaN dtype: object
Calling on an Index
with a regex with exactly one capture group returns a DataFrame
with one column if expand=True
,
In [37]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"]) In [38]: s Out[38]: A11 a1 B22 b2 C33 c3 dtype: object In [39]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True) Out[39]: letter 0 A 1 B 2 C
It returns an Index
if expand=False
.
In [40]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False) Out[40]: Index([u'A', u'B', u'C'], dtype='object', name=u'letter')
Calling on an Index
with a regex with more than one capture group returns a DataFrame
if expand=True
.
In [41]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True) Out[41]: letter 1 0 A 11 1 B 22 2 C 33
It raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False) ValueError: only one regex group is supported with Index
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex in first row)
1 group | >1 group | |
Index | Index | ValueError |
Series | Series | DataFrame |
Extract all matches in each subject (extractall)
New in version 0.18.0.
Unlike extract
(which returns only the first match),
In [42]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"]) In [43]: s Out[43]: A a1a2 B b1 C c1 dtype: object In [44]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])' In [45]: s.str.extract(two_groups, expand=True) Out[45]: letter digit A a 1 B b 1 C c 1
the extractall
method returns every match. The result of extractall
is always a DataFrame
with a MultiIndex
on its rows. The last level of the MultiIndex
is named match
and indicates the order in the subject.
In [46]: s.str.extractall(two_groups) Out[46]: letter digit match A 0 a 1 1 a 2 B 0 b 1 C 0 c 1
When each subject string in the Series has exactly one match,
In [47]: s = pd.Series(['a3', 'b3', 'c2']) In [48]: s Out[48]: 0 a3 1 b3 2 c2 dtype: object
then extractall(pat).xs(0, level='match')
gives the same result as extract(pat)
.
In [49]: extract_result = s.str.extract(two_groups, expand=True) In [50]: extract_result Out[50]: letter digit 0 a 3 1 b 3 2 c 2 In [51]: extractall_result = s.str.extractall(two_groups) In [52]: extractall_result Out[52]: letter digit match 0 0 a 3 1 0 b 3 2 0 c 2 In [53]: extractall_result.xs(0, level="match") Out[53]: letter digit 0 a 3 1 b 3 2 c 2
Index
also supports .str.extractall
. It returns a DataFrame
which has the same result as a Series.str.extractall
with a default index (starts from 0).
New in version 0.19.0.
In [54]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups) Out[54]: letter digit match 0 0 a 1 1 a 2 1 0 b 1 2 0 c 1 In [55]: pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups) Out[55]: letter digit match 0 0 a 1 1 a 2 1 0 b 1 2 0 c 1
Testing for Strings that Match or Contain a Pattern
You can check whether elements contain a pattern:
In [56]: pattern = r'[a-z][0-9]' In [57]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern) Out[57]: 0 False 1 False 2 False 3 False 4 False dtype: bool
or match a pattern:
In [58]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern, as_indexer=True) Out[58]: 0 False 1 False 2 False 3 False 4 False dtype: bool
The distinction between match
and contains
is strictness: match
relies on strict re.match
, while contains
relies on re.search
.
Warning
In previous versions, match
was for extracting groups, returning a not-so-convenient Series of tuples. The new method extract
(described in the previous section) is now preferred.
This old, deprecated behavior of match
is still the default. As demonstrated above, use the new behavior by setting as_indexer=True
. In this mode, match
is analogous to contains
, returning a boolean Series. The new behavior will become the default behavior in a future release.
-
Methods like match, contains, startswith, and endswith take
- an extra
na
argument so missing values can be considered True or False:
In [59]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [60]: s4.str.contains('A', na=False) Out[60]: 0 True 1 False 2 False 3 True 4 False 5 False 6 True 7 False 8 False dtype: bool
Creating Indicator Variables
You can extract dummy variables from string columns. For example if they are separated by a '|'
:
In [61]: s = pd.Series(['a', 'a|b', np.nan, 'a|c']) In [62]: s.str.get_dummies(sep='|') Out[62]: a b c 0 1 0 0 1 1 1 0 2 0 0 0 3 1 0 1
String Index
also supports get_dummies
which returns a MultiIndex
.
New in version 0.18.1.
In [63]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c']) In [64]: idx.str.get_dummies(sep='|') Out[64]: MultiIndex(levels=[[0, 1], [0, 1], [0, 1]], labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]], names=[u'a', u'b', u'c'])
See also get_dummies()
.
Method Summary
Method | Description |
---|---|
cat() | Concatenate strings |
split() | Split strings on delimiter |
rsplit() | Split strings on delimiter working from the end of the string |
get() | Index into each element (retrieve i-th element) |
join() | Join strings in each element of the Series with passed separator |
get_dummies() | Split strings on the delimiter returning DataFrame of dummy variables |
contains() | Return boolean array if each string contains pattern/regex |
replace() | Replace occurrences of pattern/regex with some other string |
repeat() | Duplicate values (s.str.repeat(3) equivalent to x * 3 ) |
pad() | Add whitespace to left, right, or both sides of strings |
center() | Equivalent to str.center
|
ljust() | Equivalent to str.ljust
|
rjust() | Equivalent to str.rjust
|
zfill() | Equivalent to str.zfill
|
wrap() | Split long strings into lines with length less than a given width |
slice() | Slice each string in the Series |
slice_replace() | Replace slice in each string with passed value |
count() | Count occurrences of pattern |
startswith() | Equivalent to str.startswith(pat) for each element |
endswith() | Equivalent to str.endswith(pat) for each element |
findall() | Compute list of all occurrences of pattern/regex for each string |
match() | Call re.match on each element, returning matched groups as list |
extract() | Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
extractall() | Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
len() | Compute string lengths |
strip() | Equivalent to str.strip
|
rstrip() | Equivalent to str.rstrip
|
lstrip() | Equivalent to str.lstrip
|
partition() | Equivalent to str.partition
|
rpartition() | Equivalent to str.rpartition
|
lower() | Equivalent to str.lower
|
upper() | Equivalent to str.upper
|
find() | Equivalent to str.find
|
rfind() | Equivalent to str.rfind
|
index() | Equivalent to str.index
|
rindex() | Equivalent to str.rindex
|
capitalize() | Equivalent to str.capitalize
|
swapcase() | Equivalent to str.swapcase
|
normalize() | Return Unicode normal form. Equivalent to unicodedata.normalize
|
translate() | Equivalent to str.translate
|
isalnum() | Equivalent to str.isalnum
|
isalpha() | Equivalent to str.isalpha
|
isdigit() | Equivalent to str.isdigit
|
isspace() | Equivalent to str.isspace
|
islower() | Equivalent to str.islower
|
isupper() | Equivalent to str.isupper
|
istitle() | Equivalent to str.istitle
|
isnumeric() | Equivalent to str.isnumeric
|
isdecimal() | Equivalent to str.isdecimal
|
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.19.2/text.html