Indexing and Selecting Data
The axis labeling information in pandas objects serves many purposes:
- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
- Enables automatic and explicit data alignment
- Allows intuitive getting and setting of subsets of the data set
In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area. Expect more work to be invested in higher-dimensional data structures (including Panel
) in the future, especially in label-based advanced indexing.
Note
The Python and NumPy indexing operators []
and attribute operator .
provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment
and should be avoided. See Returning a View versus Copy
Warning
In 0.15.0 Index
has internally been refactored to no longer subclass ndarray
but instead subclass PandasObject
, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)
Warning
Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see here.
See the MultiIndex / Advanced Indexing for MultiIndex
and more advanced indexing documentation.
See the cookbook for some advanced strategies
Different Choices for Indexing
New in version 0.11.0.
Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.
-
.loc
is primarily label based, but may also be used with a boolean array..loc
will raiseKeyError
when the items are not found. Allowed inputs are:- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index. This use is not an integer position along the index) - A list or array of labels
['a', 'b', 'c']
- A slice object with labels
'a':'f'
, (note that contrary to usual python slices, both the start and the stop are included!) - A boolean array
-
A
callable
function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)New in version 0.18.1.
See more at Selection by Label
- A single label, e.g.
-
.iloc
is primarily integer position based (from0
tolength-1
of the axis), but may also be used with a boolean array..iloc
will raiseIndexError
if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:- An integer e.g.
5
- A list or array of integers
[4, 3, 0]
- A slice object with ints
1:7
- A boolean array
-
A
callable
function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)New in version 0.18.1.
See more at Selection by Position
- An integer e.g.
-
.ix
supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type..ix
is the most general and will support any of the inputs in.loc
and.iloc
..ix
also supports floating point label schemes..ix
is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use
.iloc
or.loc
.See more at Advanced Indexing and Advanced Hierarchical.
-
.loc
,.iloc
,.ix
and also[]
indexing can accept acallable
as indexer. See more at Selection By Callable.
Getting values from an object with multi-axes selection uses the following notation (using .loc
as an example, but applies to .iloc
and .ix
as well). Any of the axes accessors may be the null slice :
. Axes left out of the specification are assumed to be :
. (e.g. p.loc['a']
is equiv to p.loc['a', :, :]
)
Object Type | Indexers |
---|---|
Series | s.loc[indexer] |
DataFrame | df.loc[row_indexer,column_indexer] |
Panel | p.loc[item_indexer,major_indexer,minor_indexer] |
Basics
As mentioned when introducing the data structures in the last section, the primary function of indexing with []
(a.k.a. __getitem__
for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. Thus,
Object Type | Selection | Return Value Type |
---|---|---|
Series | series[label] | scalar value |
DataFrame | frame[colname] |
Series corresponding to colname |
Panel | panel[itemname] |
DataFrame corresponding to the itemname |
Here we construct a simple time series data set to use for illustrating the indexing functionality:
In [1]: dates = pd.date_range('1/1/2000', periods=8) In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) In [3]: df Out[3]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 In [4]: panel = pd.Panel({'one' : df, 'two' : df - df.mean()}) In [5]: panel Out[5]: <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis) Items axis: one to two Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00 Minor_axis axis: A to D
Note
None of the indexing functionality is time series specific unless specifically stated.
Thus, as per above, we have the most basic indexing using []
:
In [6]: s = df['A'] In [7]: s[dates[5]] Out[7]: -0.67368970808837059 In [8]: panel['two'] Out[8]: A B C D 2000-01-01 0.409571 0.113086 -0.610826 -0.936507 2000-01-02 1.152571 0.222735 1.017442 -0.845111 2000-01-03 -0.921390 -1.708620 0.403304 1.270929 2000-01-04 0.662014 -0.310822 -0.141342 0.470985 2000-01-05 -0.484513 0.962970 1.174465 -0.888276 2000-01-06 -0.733231 0.509598 -0.580194 0.724113 2000-01-07 0.345164 0.972995 -0.816769 -0.840143 2000-01-08 -0.430188 -0.761943 -0.446079 1.044010
You can pass a list of columns to []
to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:
In [9]: df Out[9]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 In [10]: df[['B', 'A']] = df[['A', 'B']] In [11]: df Out[11]: A B C D 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632 2000-01-02 -0.173215 1.212112 0.119209 -1.044236 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804 2000-01-04 -0.706771 0.721555 -1.039575 0.271860 2000-01-05 0.567020 -0.424972 0.276232 -1.087401 2000-01-06 0.113648 -0.673690 -1.478427 0.524988 2000-01-07 0.577046 0.404705 -1.715002 -1.039268 2000-01-08 -1.157892 -0.370647 -1.344312 0.844885
You may find this useful for applying a transform (in-place) to a subset of the columns.
Warning
pandas aligns all AXES when setting Series
and DataFrame
from .loc
, .iloc
and .ix
.
This will not modify df
because the column alignment is before value assignment.
In [12]: df[['A', 'B']] Out[12]: A B 2000-01-01 -0.282863 0.469112 2000-01-02 -0.173215 1.212112 2000-01-03 -2.104569 -0.861849 2000-01-04 -0.706771 0.721555 2000-01-05 0.567020 -0.424972 2000-01-06 0.113648 -0.673690 2000-01-07 0.577046 0.404705 2000-01-08 -1.157892 -0.370647 In [13]: df.loc[:,['B', 'A']] = df[['A', 'B']] In [14]: df[['A', 'B']] Out[14]: A B 2000-01-01 -0.282863 0.469112 2000-01-02 -0.173215 1.212112 2000-01-03 -2.104569 -0.861849 2000-01-04 -0.706771 0.721555 2000-01-05 0.567020 -0.424972 2000-01-06 0.113648 -0.673690 2000-01-07 0.577046 0.404705 2000-01-08 -1.157892 -0.370647
The correct way is to use raw values
In [15]: df.loc[:,['B', 'A']] = df[['A', 'B']].values In [16]: df[['A', 'B']] Out[16]: A B 2000-01-01 0.469112 -0.282863 2000-01-02 1.212112 -0.173215 2000-01-03 -0.861849 -2.104569 2000-01-04 0.721555 -0.706771 2000-01-05 -0.424972 0.567020 2000-01-06 -0.673690 0.113648 2000-01-07 0.404705 0.577046 2000-01-08 -0.370647 -1.157892
Attribute Access
You may access an index on a Series
, column on a DataFrame
, and an item on a Panel
directly as an attribute:
In [17]: sa = pd.Series([1,2,3],index=list('abc')) In [18]: dfa = df.copy()
In [19]: sa.b Out[19]: 2 In [20]: dfa.A Out[20]: 2000-01-01 0.469112 2000-01-02 1.212112 2000-01-03 -0.861849 2000-01-04 0.721555 2000-01-05 -0.424972 2000-01-06 -0.673690 2000-01-07 0.404705 2000-01-08 -0.370647 Freq: D, Name: A, dtype: float64 In [21]: panel.one Out[21]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.
In [22]: sa.a = 5 In [23]: sa Out[23]: a 5 b 2 c 3 dtype: int64 In [24]: dfa.A = list(range(len(dfa.index))) # ok if A already exists In [25]: dfa Out[25]: A B C D 2000-01-01 0 -0.282863 -1.509059 -1.135632 2000-01-02 1 -0.173215 0.119209 -1.044236 2000-01-03 2 -2.104569 -0.494929 1.071804 2000-01-04 3 -0.706771 -1.039575 0.271860 2000-01-05 4 0.567020 0.276232 -1.087401 2000-01-06 5 0.113648 -1.478427 0.524988 2000-01-07 6 0.577046 -1.715002 -1.039268 2000-01-08 7 -1.157892 -1.344312 0.844885 In [26]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column In [27]: dfa Out[27]: A B C D 2000-01-01 0 -0.282863 -1.509059 -1.135632 2000-01-02 1 -0.173215 0.119209 -1.044236 2000-01-03 2 -2.104569 -0.494929 1.071804 2000-01-04 3 -0.706771 -1.039575 0.271860 2000-01-05 4 0.567020 0.276232 -1.087401 2000-01-06 5 0.113648 -1.478427 0.524988 2000-01-07 6 0.577046 -1.715002 -1.039268 2000-01-08 7 -1.157892 -1.344312 0.844885
Warning
- You can use this access only if the index element is a valid python identifier, e.g.
s.1
is not allowed. See here for an explanation of valid identifiers. - The attribute will not be available if it conflicts with an existing method name, e.g.
s.min
is not allowed. - Similarly, the attribute will not be available if it conflicts with any of the following list:
index
,major_axis
,minor_axis
,items
,labels
. - In any of these cases, standard indexing will still work, e.g.
s['1']
,s['min']
, ands['index']
will access the corresponding element or column. - The
Series/Panel
accesses are available starting in 0.13.0.
If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.
You can also assign a dict
to a row of a DataFrame
:
In [28]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]}) In [29]: x.iloc[1] = dict(x=9, y=99) In [30]: x Out[30]: x y 0 1 3 1 9 99 2 3 5
Slicing ranges
The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position section detailing the .iloc
method. For now, we explain the semantics of slicing using the []
operator.
With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:
In [31]: s[:5] Out[31]: 2000-01-01 0.469112 2000-01-02 1.212112 2000-01-03 -0.861849 2000-01-04 0.721555 2000-01-05 -0.424972 Freq: D, Name: A, dtype: float64 In [32]: s[::2] Out[32]: 2000-01-01 0.469112 2000-01-03 -0.861849 2000-01-05 -0.424972 2000-01-07 0.404705 Freq: 2D, Name: A, dtype: float64 In [33]: s[::-1] Out[33]: 2000-01-08 -0.370647 2000-01-07 0.404705 2000-01-06 -0.673690 2000-01-05 -0.424972 2000-01-04 0.721555 2000-01-03 -0.861849 2000-01-02 1.212112 2000-01-01 0.469112 Freq: -1D, Name: A, dtype: float64
Note that setting works as well:
In [34]: s2 = s.copy() In [35]: s2[:5] = 0 In [36]: s2 Out[36]: 2000-01-01 0.000000 2000-01-02 0.000000 2000-01-03 0.000000 2000-01-04 0.000000 2000-01-05 0.000000 2000-01-06 -0.673690 2000-01-07 0.404705 2000-01-08 -0.370647 Freq: D, Name: A, dtype: float64
With DataFrame, slicing inside of []
slices the rows. This is provided largely as a convenience since it is such a common operation.
In [37]: df[:3] Out[37]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [38]: df[::-1] Out[38]: A B C D 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
Selection By Label
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment
and should be avoided. See Returning a View versus Copy
Warning
.loc
is strict when you present slicers that are not compatible (or convertible) with the index type. For example using integers in a DatetimeIndex
. These will raise a TypeError
. In [39]: dfl = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.date_range('20130101',periods=5)) In [40]: dfl Out[40]: A B C D 2013-01-01 1.075770 -0.109050 1.643563 -1.469388 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914 2013-01-03 -1.294524 0.413738 0.276662 -0.472035 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061 2013-01-05 0.895717 0.805244 -1.206412 2.565646
In [4]: dfl.loc[2:3] TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>
String likes in slicing can be convertible to the type of the index and lead to natural slicing.
In [41]: dfl.loc['20130102':'20130104'] Out[41]: A B C D 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914 2013-01-03 -1.294524 0.413738 0.276662 -0.472035 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. At least 1 of the labels for which you ask, must be in the index or a KeyError
will be raised! When slicing, the start bound is included, AND the stop bound is included. Integers are valid labels, but they refer to the label and not the position.
The .loc
attribute is the primary access method. The following are valid inputs:
- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index. This use is not an integer position along the index) - A list or array of labels
['a', 'b', 'c']
- A slice object with labels
'a':'f'
(note that contrary to usual python slices, both the start and the stop are included!) - A boolean array
- A
callable
, see Selection By Callable
In [42]: s1 = pd.Series(np.random.randn(6),index=list('abcdef')) In [43]: s1 Out[43]: a 1.431256 b 1.340309 c -1.170299 d -0.226169 e 0.410835 f 0.813850 dtype: float64 In [44]: s1.loc['c':] Out[44]: c -1.170299 d -0.226169 e 0.410835 f 0.813850 dtype: float64 In [45]: s1.loc['b'] Out[45]: 1.3403088497993827
Note that setting works as well:
In [46]: s1.loc['c':] = 0 In [47]: s1 Out[47]: a 1.431256 b 1.340309 c 0.000000 d 0.000000 e 0.000000 f 0.000000 dtype: float64
With a DataFrame
In [48]: df1 = pd.DataFrame(np.random.randn(6,4), ....: index=list('abcdef'), ....: columns=list('ABCD')) ....: In [49]: df1 Out[49]: A B C D a 0.132003 -0.827317 -0.076467 -1.187678 b 1.130127 -1.436737 -1.413681 1.607920 c 1.024180 0.569605 0.875906 -2.211372 d 0.974466 -2.006747 -0.410001 -0.078638 e 0.545952 -1.219217 -1.226825 0.769804 f -1.281247 -0.727707 -0.121306 -0.097883 In [50]: df1.loc[['a', 'b', 'd'], :] Out[50]: A B C D a 0.132003 -0.827317 -0.076467 -1.187678 b 1.130127 -1.436737 -1.413681 1.607920 d 0.974466 -2.006747 -0.410001 -0.078638
Accessing via label slices
In [51]: df1.loc['d':, 'A':'C'] Out[51]: A B C d 0.974466 -2.006747 -0.410001 e 0.545952 -1.219217 -1.226825 f -1.281247 -0.727707 -0.121306
For getting a cross section using a label (equiv to df.xs('a')
)
In [52]: df1.loc['a'] Out[52]: A 0.132003 B -0.827317 C -0.076467 D -1.187678 Name: a, dtype: float64
For getting values with a boolean array
In [53]: df1.loc['a'] > 0 Out[53]: A True B False C False D False Name: a, dtype: bool In [54]: df1.loc[:, df1.loc['a'] > 0] Out[54]: A a 0.132003 b 1.130127 c 1.024180 d 0.974466 e 0.545952 f -1.281247
For getting a value explicitly (equiv to deprecated df.get_value('a','A')
)
# this is also equivalent to ``df1.at['a','A']`` In [55]: df1.loc['a', 'A'] Out[55]: 0.13200317033032932
Selection By Position
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment
and should be avoided. See Returning a View versus Copy
pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely python and numpy slicing. These are 0-based
indexing. When slicing, the start bounds is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise a IndexError
.
The .iloc
attribute is the primary access method. The following are valid inputs:
- An integer e.g.
5
- A list or array of integers
[4, 3, 0]
- A slice object with ints
1:7
- A boolean array
- A
callable
, see Selection By Callable
In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0,10,2))) In [57]: s1 Out[57]: 0 0.695775 2 0.341734 4 0.959726 6 -1.110336 8 -0.619976 dtype: float64 In [58]: s1.iloc[:3] Out[58]: 0 0.695775 2 0.341734 4 0.959726 dtype: float64 In [59]: s1.iloc[3] Out[59]: -1.1103361028911669
Note that setting works as well:
In [60]: s1.iloc[:3] = 0 In [61]: s1 Out[61]: 0 0.000000 2 0.000000 4 0.000000 6 -1.110336 8 -0.619976 dtype: float64
With a DataFrame
In [62]: df1 = pd.DataFrame(np.random.randn(6,4), ....: index=list(range(0,12,2)), ....: columns=list(range(0,8,2))) ....: In [63]: df1 Out[63]: 0 2 4 6 0 0.149748 -0.732339 0.687738 0.176444 2 0.403310 -0.154951 0.301624 -2.179861 4 -1.369849 -0.954208 1.462696 -1.743161 6 -0.826591 -0.345352 1.314232 0.690579 8 0.995761 2.396780 0.014871 3.357427 10 -0.317441 -1.236269 0.896171 -0.487602
Select via integer slicing
In [64]: df1.iloc[:3] Out[64]: 0 2 4 6 0 0.149748 -0.732339 0.687738 0.176444 2 0.403310 -0.154951 0.301624 -2.179861 4 -1.369849 -0.954208 1.462696 -1.743161 In [65]: df1.iloc[1:5, 2:4] Out[65]: 4 6 2 0.301624 -2.179861 4 1.462696 -1.743161 6 1.314232 0.690579 8 0.014871 3.357427
Select via integer list
In [66]: df1.iloc[[1, 3, 5], [1, 3]] Out[66]: 2 6 2 -0.154951 -2.179861 6 -0.345352 0.690579 10 -1.236269 -0.487602
In [67]: df1.iloc[1:3, :] Out[67]: 0 2 4 6 2 0.403310 -0.154951 0.301624 -2.179861 4 -1.369849 -0.954208 1.462696 -1.743161
In [68]: df1.iloc[:, 1:3] Out[68]: 2 4 0 -0.732339 0.687738 2 -0.154951 0.301624 4 -0.954208 1.462696 6 -0.345352 1.314232 8 2.396780 0.014871 10 -1.236269 0.896171
# this is also equivalent to ``df1.iat[1,1]`` In [69]: df1.iloc[1, 1] Out[69]: -0.15495077442490321
For getting a cross section using an integer position (equiv to df.xs(1)
)
In [70]: df1.iloc[1] Out[70]: 0 0.403310 2 -0.154951 4 0.301624 6 -2.179861 Name: 2, dtype: float64
Out of range slice indexes are handled gracefully just as in Python/Numpy.
# these are allowed in python/numpy. # Only works in Pandas starting from v0.14.0. In [71]: x = list('abcdef') In [72]: x Out[72]: ['a', 'b', 'c', 'd', 'e', 'f'] In [73]: x[4:10] Out[73]: ['e', 'f'] In [74]: x[8:10] Out[74]: [] In [75]: s = pd.Series(x) In [76]: s Out[76]: 0 a 1 b 2 c 3 d 4 e 5 f dtype: object In [77]: s.iloc[4:10] Out[77]: 4 e 5 f dtype: object In [78]: s.iloc[8:10] Out[78]: Series([], dtype: object)
Note
Prior to v0.14.0, iloc
would not accept out of bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed.
Note that this could result in an empty axis (e.g. an empty DataFrame being returned)
In [79]: dfl = pd.DataFrame(np.random.randn(5,2), columns=list('AB')) In [80]: dfl Out[80]: A B 0 -0.082240 -2.182937 1 0.380396 0.084844 2 0.432390 1.519970 3 -0.493662 0.600178 4 0.274230 0.132885 In [81]: dfl.iloc[:, 2:3] Out[81]: Empty DataFrame Columns: [] Index: [0, 1, 2, 3, 4] In [82]: dfl.iloc[:, 1:3] Out[82]: B 0 -2.182937 1 0.084844 2 1.519970 3 0.600178 4 0.132885 In [83]: dfl.iloc[4:6] Out[83]: A B 4 0.27423 0.132885
A single indexer that is out of bounds will raise an IndexError
. A list of indexers where any element is out of bounds will raise an IndexError
dfl.iloc[[4, 5, 6]] IndexError: positional indexers are out-of-bounds dfl.iloc[:, 4] IndexError: single positional indexer is out-of-bounds
Selection By Callable
New in version 0.18.1.
.loc
, .iloc
, .ix
and also []
indexing can accept a callable
as indexer. The callable
must be a function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing.
In [84]: df1 = pd.DataFrame(np.random.randn(6, 4), ....: index=list('abcdef'), ....: columns=list('ABCD')) ....: In [85]: df1 Out[85]: A B C D a -0.023688 2.410179 1.450520 0.206053 b -0.251905 -2.213588 1.063327 1.266143 c 0.299368 -0.863838 0.408204 -1.048089 d -0.025747 -0.988387 0.094055 1.262731 e 1.289997 0.082423 -0.055758 0.536580 f -0.489682 0.369374 -0.034571 -2.484478 In [86]: df1.loc[lambda df: df.A > 0, :] Out[86]: A B C D c 0.299368 -0.863838 0.408204 -1.048089 e 1.289997 0.082423 -0.055758 0.536580 In [87]: df1.loc[:, lambda df: ['A', 'B']] Out[87]: A B a -0.023688 2.410179 b -0.251905 -2.213588 c 0.299368 -0.863838 d -0.025747 -0.988387 e 1.289997 0.082423 f -0.489682 0.369374 In [88]: df1.iloc[:, lambda df: [0, 1]] Out[88]: A B a -0.023688 2.410179 b -0.251905 -2.213588 c 0.299368 -0.863838 d -0.025747 -0.988387 e 1.289997 0.082423 f -0.489682 0.369374 In [89]: df1[lambda df: df.columns[0]] Out[89]: a -0.023688 b -0.251905 c 0.299368 d -0.025747 e 1.289997 f -0.489682 Name: A, dtype: float64
You can use callable indexing in Series
.
In [90]: df1.A.loc[lambda s: s > 0] Out[90]: c 0.299368 e 1.289997 Name: A, dtype: float64
Using these methods / indexers, you can chain data selection operations without using temporary variable.
In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id') In [92]: (bb.groupby(['year', 'team']).sum() ....: .loc[lambda df: df.r > 100]) ....: Out[92]: stint g ab r h X2b X3b hr rbi sb cs bb \ year team 2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105 DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97 HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60 LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114 NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174 SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235 TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73 TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190 so ibb hbp sh sf gidp year team 2007 CIN 127.0 14.0 1.0 1.0 15.0 18.0 DET 176.0 3.0 10.0 4.0 8.0 28.0 HOU 212.0 3.0 9.0 16.0 6.0 17.0 LAN 141.0 8.0 9.0 3.0 8.0 29.0 NYN 310.0 24.0 23.0 18.0 15.0 48.0 SFN 188.0 51.0 8.0 16.0 6.0 41.0 TEX 140.0 4.0 5.0 2.0 8.0 16.0 TOR 265.0 16.0 12.0 4.0 16.0 38.0
Selecting Random Samples
A random selection of rows or columns from a Series, DataFrame, or Panel with the sample()
method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.
In [93]: s = pd.Series([0,1,2,3,4,5]) # When no arguments are passed, returns 1 row. In [94]: s.sample() Out[94]: 4 4 dtype: int64 # One may specify either a number of rows: In [95]: s.sample(n=3) Out[95]: 0 0 4 4 1 1 dtype: int64 # Or a fraction of the rows: In [96]: s.sample(frac=0.5) Out[96]: 5 5 3 3 1 1 dtype: int64
By default, sample
will return each row at most once, but one can also sample with replacement using the replace
option:
In [97]: s = pd.Series([0,1,2,3,4,5]) # Without replacement (default): In [98]: s.sample(n=6, replace=False) Out[98]: 0 0 1 1 5 5 3 3 2 2 4 4 dtype: int64 # With replacement: In [99]: s.sample(n=6, replace=True) Out[99]: 0 0 4 4 3 3 2 2 4 4 4 4 dtype: int64
By default, each row has an equal probability of being selected, but if you want rows to have different probabilities, you can pass the sample
function sampling weights as weights
. These weights can be a list, a numpy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:
In [100]: s = pd.Series([0,1,2,3,4,5]) In [101]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4] In [102]: s.sample(n=3, weights=example_weights) Out[102]: 5 5 4 4 3 3 dtype: int64 # Weights will be re-normalized automatically In [103]: example_weights2 = [0.5, 0, 0, 0, 0, 0] In [104]: s.sample(n=1, weights=example_weights2) Out[104]: 0 0 dtype: int64
When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.
In [105]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]}) In [106]: df2.sample(n = 3, weights = 'weight_column') Out[106]: col1 weight_column 1 8 0.4 0 9 0.5 2 7 0.1
sample
also allows users to sample columns instead of rows using the axis
argument.
In [107]: df3 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]}) In [108]: df3.sample(n=1, axis=1) Out[108]: col1 0 1 1 2 2 3
Finally, one can also set a seed for sample
‘s random number generator using the random_state
argument, which will accept either an integer (as a seed) or a numpy RandomState object.
In [109]: df4 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]}) # With a given seed, the sample will always draw the same rows. In [110]: df4.sample(n=2, random_state=2) Out[110]: col1 col2 2 3 4 1 2 3 In [111]: df4.sample(n=2, random_state=2) Out[111]: col1 col2 2 3 4 1 2 3
Setting With Enlargement
New in version 0.13.
The .loc/.ix/[]
operations can perform enlargement when setting a non-existant key for that axis.
In the Series
case this is effectively an appending operation
In [112]: se = pd.Series([1,2,3]) In [113]: se Out[113]: 0 1 1 2 2 3 dtype: int64 In [114]: se[5] = 5. In [115]: se Out[115]: 0 1.0 1 2.0 2 3.0 5 5.0 dtype: float64
A DataFrame
can be enlarged on either axis via .loc
In [116]: dfi = pd.DataFrame(np.arange(6).reshape(3,2), .....: columns=['A','B']) .....: In [117]: dfi Out[117]: A B 0 0 1 1 2 3 2 4 5 In [118]: dfi.loc[:,'C'] = dfi.loc[:,'A'] In [119]: dfi Out[119]: A B C 0 0 1 0 1 2 3 2 2 4 5 4
This is like an append
operation on the DataFrame
.
In [120]: dfi.loc[3] = 5 In [121]: dfi Out[121]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 3 5 5 5
Fast scalar value getting and setting
Since indexing with []
must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at
and iat
methods, which are implemented on all of the data structures.
Similarly to loc
, at
provides label based scalar lookups, while, iat
provides integer based lookups analogously to iloc
In [122]: s.iat[5] Out[122]: 5 In [123]: df.at[dates[5], 'A'] Out[123]: -0.67368970808837059 In [124]: df.iat[3, 0] Out[124]: 0.72155516224436689
You can also set using these same indexers.
In [125]: df.at[dates[5], 'E'] = 7 In [126]: df.iat[3, 0] = 7
at
may enlarge the object in-place as above if the indexer is missing.
In [127]: df.at[dates[-1]+1, 0] = 7 In [128]: df Out[128]: A B C D E 0 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN NaN 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN NaN 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7.0 NaN 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN NaN 2000-01-09 NaN NaN NaN NaN NaN 7.0
Boolean indexing
Another common operation is the use of boolean vectors to filter the data. The operators are: |
for or
, &
for and
, and ~
for not
. These must be grouped by using parentheses.
Using a boolean vector to index a Series works exactly as in a numpy ndarray:
In [129]: s = pd.Series(range(-3, 4)) In [130]: s Out[130]: 0 -3 1 -2 2 -1 3 0 4 1 5 2 6 3 dtype: int64 In [131]: s[s > 0] Out[131]: 4 1 5 2 6 3 dtype: int64 In [132]: s[(s < -1) | (s > 0.5)] Out[132]: 0 -3 1 -2 4 1 5 2 6 3 dtype: int64 In [133]: s[~(s < 0)] Out[133]: 3 0 4 1 5 2 6 3 dtype: int64
You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):
In [134]: df[df['A'] > 0] Out[134]: A B C D E 0 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
List comprehensions and map
method of Series can also be used to produce more complex criteria:
In [135]: df2 = pd.DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'], .....: 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'], .....: 'c' : np.random.randn(7)}) .....: # only want 'two' or 'three' In [136]: criterion = df2['a'].map(lambda x: x.startswith('t')) In [137]: df2[criterion] Out[137]: a b c 2 two y 0.041290 3 three x 0.361719 4 two y -0.238075 # equivalent but slower In [138]: df2[[x.startswith('t') for x in df2['a']]] Out[138]: a b c 2 two y 0.041290 3 three x 0.361719 4 two y -0.238075 # Multiple criteria In [139]: df2[criterion & (df2['b'] == 'x')] Out[139]: a b c 3 three x 0.361719
Note, with the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.
In [140]: df2.loc[criterion & (df2['b'] == 'x'),'b':'c'] Out[140]: b c 3 x 0.361719
Indexing with isin
Consider the isin
method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want:
In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64') In [142]: s Out[142]: 4 0 3 1 2 2 1 3 0 4 dtype: int64 In [143]: s.isin([2, 4, 6]) Out[143]: 4 False 3 False 2 True 1 False 0 True dtype: bool In [144]: s[s.isin([2, 4, 6])] Out[144]: 2 2 0 4 dtype: int64
The same method is available for Index
objects and is useful for the cases when you don’t know which of the sought labels are in fact present:
In [145]: s[s.index.isin([2, 4, 6])] Out[145]: 4 0 2 2 dtype: int64 # compare it to the following In [146]: s[[2, 4, 6]] Out[146]: 2 2.0 4 0.0 6 NaN dtype: float64
In addition to that, MultiIndex
allows selecting a separate level to use in the membership check:
In [147]: s_mi = pd.Series(np.arange(6), .....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])) .....: In [148]: s_mi Out[148]: 0 a 0 b 1 c 2 1 a 3 b 4 c 5 dtype: int64 In [149]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])] Out[149]: 0 c 2 1 a 3 dtype: int64 In [150]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)] Out[150]: 0 a 0 c 2 1 a 3 c 5 dtype: int64
DataFrame also has an isin
method. When calling isin
, pass a set of values as either an array or dict. If values is an array, isin
returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.
In [151]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], .....: 'ids2': ['a', 'n', 'c', 'n']}) .....: In [152]: values = ['a', 'b', 1, 3] In [153]: df.isin(values) Out[153]: ids ids2 vals 0 True True True 1 True False False 2 False False True 3 False False False
Oftentimes you’ll want to match certain values with certain columns. Just make values a dict
where the key is the column, and the value is a list of items you want to check for.
In [154]: values = {'ids': ['a', 'b'], 'vals': [1, 3]} In [155]: df.isin(values) Out[155]: ids ids2 vals 0 True False True 1 True False False 2 False False True 3 False False False
Combine DataFrame’s isin
with the any()
and all()
methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:
In [156]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]} In [157]: row_mask = df.isin(values).all(1) In [158]: df[row_mask] Out[158]: ids ids2 vals 0 a a 1
The where()
Method and Masking
Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the where
method in Series
and DataFrame
.
To return only the selected rows
In [159]: s[s > 0] Out[159]: 3 1 2 2 1 3 0 4 dtype: int64
To return a Series of the same shape as the original
In [160]: s.where(s > 0) Out[160]: 4 NaN 3 1.0 2 2.0 1 3.0 0 4.0 dtype: float64
Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. where
is used under the hood as the implementation. Equivalent is df.where(df < 0)
In [161]: df[df < 0] Out[161]: A B C D 2000-01-01 -2.104139 -1.309525 NaN NaN 2000-01-02 -0.352480 NaN -1.192319 NaN 2000-01-03 -0.864883 NaN -0.227870 NaN 2000-01-04 NaN -1.222082 NaN -1.233203 2000-01-05 NaN -0.605656 -1.169184 NaN 2000-01-06 NaN -0.948458 NaN -0.684718 2000-01-07 -2.670153 -0.114722 NaN -0.048048 2000-01-08 NaN NaN -0.048788 -0.808838
In addition, where
takes an optional other
argument for replacement of values where the condition is False, in the returned copy.
In [162]: df.where(df < 0, -df) Out[162]: A B C D 2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166 2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824 2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059 2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203 2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416 2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718 2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048 2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838
You may wish to set values based on some boolean criteria. This can be done intuitively like so:
In [163]: s2 = s.copy() In [164]: s2[s2 < 0] = 0 In [165]: s2 Out[165]: 4 0 3 1 2 2 1 3 0 4 dtype: int64 In [166]: df2 = df.copy() In [167]: df2[df2 < 0] = 0 In [168]: df2 Out[168]: A B C D 2000-01-01 0.000000 0.000000 0.485855 0.245166 2000-01-02 0.000000 0.390389 0.000000 1.655824 2000-01-03 0.000000 0.299674 0.000000 0.281059 2000-01-04 0.846958 0.000000 0.600705 0.000000 2000-01-05 0.669692 0.000000 0.000000 0.342416 2000-01-06 0.868584 0.000000 2.297780 0.000000 2000-01-07 0.000000 0.000000 0.168904 0.000000 2000-01-08 0.801196 1.392071 0.000000 0.000000
By default, where
returns a modified copy of the data. There is an optional parameter inplace
so that the original data can be modified without creating a copy:
In [169]: df_orig = df.copy() In [170]: df_orig.where(df > 0, -df, inplace=True); In [171]: df_orig Out[171]: A B C D 2000-01-01 2.104139 1.309525 0.485855 0.245166 2000-01-02 0.352480 0.390389 1.192319 1.655824 2000-01-03 0.864883 0.299674 0.227870 0.281059 2000-01-04 0.846958 1.222082 0.600705 1.233203 2000-01-05 0.669692 0.605656 1.169184 0.342416 2000-01-06 0.868584 0.948458 2.297780 0.684718 2000-01-07 2.670153 0.114722 0.168904 0.048048 2000-01-08 0.801196 1.392071 0.048788 0.808838
Note
The signature for DataFrame.where()
differs from numpy.where()
. Roughly df1.where(m, df2)
is equivalent to np.where(m, df1, df2)
.
In [172]: df.where(df < 0, -df) == np.where(df < 0, df, -df) Out[172]: A B C D 2000-01-01 True True True True 2000-01-02 True True True True 2000-01-03 True True True True 2000-01-04 True True True True 2000-01-05 True True True True 2000-01-06 True True True True 2000-01-07 True True True True 2000-01-08 True True True True
alignment
Furthermore, where
aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via .ix
(but on the contents rather than the axis labels)
In [173]: df2 = df.copy() In [174]: df2[ df2[1:4] > 0 ] = 3 In [175]: df2 Out[175]: A B C D 2000-01-01 -2.104139 -1.309525 0.485855 0.245166 2000-01-02 -0.352480 3.000000 -1.192319 3.000000 2000-01-03 -0.864883 3.000000 -0.227870 3.000000 2000-01-04 3.000000 -1.222082 3.000000 -1.233203 2000-01-05 0.669692 -0.605656 -1.169184 0.342416 2000-01-06 0.868584 -0.948458 2.297780 -0.684718 2000-01-07 -2.670153 -0.114722 0.168904 -0.048048 2000-01-08 0.801196 1.392071 -0.048788 -0.808838
New in version 0.13.
Where can also accept axis
and level
parameters to align the input when performing the where
.
In [176]: df2 = df.copy() In [177]: df2.where(df2>0,df2['A'],axis='index') Out[177]: A B C D 2000-01-01 -2.104139 -2.104139 0.485855 0.245166 2000-01-02 -0.352480 0.390389 -0.352480 1.655824 2000-01-03 -0.864883 0.299674 -0.864883 0.281059 2000-01-04 0.846958 0.846958 0.600705 0.846958 2000-01-05 0.669692 0.669692 0.669692 0.342416 2000-01-06 0.868584 0.868584 2.297780 0.868584 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153 2000-01-08 0.801196 1.392071 0.801196 0.801196
This is equivalent (but faster than) the following.
In [178]: df2 = df.copy() In [179]: df.apply(lambda x, y: x.where(x>0,y), y=df['A']) Out[179]: A B C D 2000-01-01 -2.104139 -2.104139 0.485855 0.245166 2000-01-02 -0.352480 0.390389 -0.352480 1.655824 2000-01-03 -0.864883 0.299674 -0.864883 0.281059 2000-01-04 0.846958 0.846958 0.600705 0.846958 2000-01-05 0.669692 0.669692 0.669692 0.342416 2000-01-06 0.868584 0.868584 2.297780 0.868584 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153 2000-01-08 0.801196 1.392071 0.801196 0.801196
New in version 0.18.1.
Where can accept a callable as condition and other
arguments. The function must be with one argument (the calling Series or DataFrame) and that returns valid output as condition and other
argument.
In [180]: df3 = pd.DataFrame({'A': [1, 2, 3], .....: 'B': [4, 5, 6], .....: 'C': [7, 8, 9]}) .....: In [181]: df3.where(lambda x: x > 4, lambda x: x + 10) Out[181]: A B C 0 11 14 7 1 12 5 8 2 13 6 9
mask
mask
is the inverse boolean operation of where
.
In [182]: s.mask(s >= 0) Out[182]: 4 NaN 3 NaN 2 NaN 1 NaN 0 NaN dtype: float64 In [183]: df.mask(df >= 0) Out[183]: A B C D 2000-01-01 -2.104139 -1.309525 NaN NaN 2000-01-02 -0.352480 NaN -1.192319 NaN 2000-01-03 -0.864883 NaN -0.227870 NaN 2000-01-04 NaN -1.222082 NaN -1.233203 2000-01-05 NaN -0.605656 -1.169184 NaN 2000-01-06 NaN -0.948458 NaN -0.684718 2000-01-07 -2.670153 -0.114722 NaN -0.048048 2000-01-08 NaN NaN -0.048788 -0.808838
The query()
Method (Experimental)
New in version 0.13.
DataFrame
objects have a query()
method that allows selection using an expression.
You can get the value of the frame where column b
has values between the values of columns a
and c
. For example:
In [184]: n = 10 In [185]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) In [186]: df Out[186]: a b c 0 0.438921 0.118680 0.863670 1 0.138138 0.577363 0.686602 2 0.595307 0.564592 0.520630 3 0.913052 0.926075 0.616184 4 0.078718 0.854477 0.898725 5 0.076404 0.523211 0.591538 6 0.792342 0.216974 0.564056 7 0.397890 0.454131 0.915716 8 0.074315 0.437913 0.019794 9 0.559209 0.502065 0.026437 # pure python In [187]: df[(df.a < df.b) & (df.b < df.c)] Out[187]: a b c 1 0.138138 0.577363 0.686602 4 0.078718 0.854477 0.898725 5 0.076404 0.523211 0.591538 7 0.397890 0.454131 0.915716 # query In [188]: df.query('(a < b) & (b < c)') Out[188]: a b c 1 0.138138 0.577363 0.686602 4 0.078718 0.854477 0.898725 5 0.076404 0.523211 0.591538 7 0.397890 0.454131 0.915716
Do the same thing but fall back on a named index if there is no column with the name a
.
In [189]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc')) In [190]: df.index.name = 'a' In [191]: df Out[191]: b c a 0 0 4 1 0 1 2 3 4 3 4 3 4 1 4 5 0 3 6 0 1 7 3 4 8 2 3 9 1 1 In [192]: df.query('a < b and b < c') Out[192]: b c a 2 3 4
If instead you don’t want to or cannot name your index, you can use the name index
in your query expression:
In [193]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc')) In [194]: df Out[194]: b c 0 3 1 1 3 0 2 5 6 3 5 2 4 7 4 5 0 1 6 2 5 7 0 1 8 6 0 9 7 9 In [195]: df.query('index < b < c') Out[195]: b c 2 5 6
Note
If the name of your index overlaps with a column name, the column name is given precedence. For example,
In [196]: df = pd.DataFrame({'a': np.random.randint(5, size=5)}) In [197]: df.index.name = 'a' In [198]: df.query('a > 2') # uses the column 'a', not the index Out[198]: a a 1 3 3 3
You can still use the index in a query expression by using the special identifier ‘index’:
In [199]: df.query('index > 2') Out[199]: a a 3 3 4 2
If for some reason you have a column named index
, then you can refer to the index as ilevel_0
as well, but at this point you should consider renaming your columns to something less ambiguous.
MultiIndex
query()
Syntax
You can also use the levels of a DataFrame
with a MultiIndex
as if they were columns in the frame:
In [200]: n = 10 In [201]: colors = np.random.choice(['red', 'green'], size=n) In [202]: foods = np.random.choice(['eggs', 'ham'], size=n) In [203]: colors Out[203]: array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green', 'green', 'green'], dtype='|S5') In [204]: foods Out[204]: array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs', 'eggs'], dtype='|S4') In [205]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food']) In [206]: df = pd.DataFrame(np.random.randn(n, 2), index=index) In [207]: df Out[207]: 0 1 color food red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255 green eggs -0.748199 1.318931 eggs -2.029766 0.792652 ham 0.461007 -0.542749 ham -0.305384 -0.479195 eggs 0.095031 -0.270099 eggs -0.707140 -0.773882 eggs 0.229453 0.304418 In [208]: df.query('color == "red"') Out[208]: 0 1 color food red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255
If the levels of the MultiIndex
are unnamed, you can refer to them using special names:
In [209]: df.index.names = [None, None] In [210]: df Out[210]: 0 1 red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255 green eggs -0.748199 1.318931 eggs -2.029766 0.792652 ham 0.461007 -0.542749 ham -0.305384 -0.479195 eggs 0.095031 -0.270099 eggs -0.707140 -0.773882 eggs 0.229453 0.304418 In [211]: df.query('ilevel_0 == "red"') Out[211]: 0 1 red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255
The convention is ilevel_0
, which means “index level 0” for the 0th level of the index
.
query()
Use Cases
A use case for query()
is when you have a collection of DataFrame
objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you’re interested in querying
In [212]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) In [213]: df Out[213]: a b c 0 0.224283 0.736107 0.139168 1 0.302827 0.657803 0.713897 2 0.611185 0.136624 0.984960 3 0.195246 0.123436 0.627712 4 0.618673 0.371660 0.047902 5 0.480088 0.062993 0.185760 6 0.568018 0.483467 0.445289 7 0.309040 0.274580 0.587101 8 0.258993 0.477769 0.370255 9 0.550459 0.840870 0.304611 In [214]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns) In [215]: df2 Out[215]: a b c 0 0.357579 0.229800 0.596001 1 0.309059 0.957923 0.965663 2 0.123102 0.336914 0.318616 3 0.526506 0.323321 0.860813 4 0.518736 0.486514 0.384724 5 0.190804 0.505723 0.614533 6 0.891939 0.623977 0.676639 7 0.480559 0.378528 0.460858 8 0.420223 0.136404 0.141295 9 0.732206 0.419540 0.604675 10 0.604466 0.848974 0.896165 11 0.589168 0.920046 0.732716 In [216]: expr = '0.0 <= a <= c <= 0.5' In [217]: map(lambda frame: frame.query(expr), [df, df2]) Out[217]: [ a b c 8 0.258993 0.477769 0.370255, a b c 2 0.123102 0.336914 0.318616]
query()
Python versus pandas Syntax Comparison
Full numpy-like syntax
In [218]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc')) In [219]: df Out[219]: a b c 0 7 8 9 1 1 0 7 2 2 7 2 3 6 2 2 4 2 6 3 5 3 8 2 6 1 7 2 7 5 1 5 8 9 8 0 9 1 5 0 In [220]: df.query('(a < b) & (b < c)') Out[220]: a b c 0 7 8 9 In [221]: df[(df.a < df.b) & (df.b < df.c)] Out[221]: a b c 0 7 8 9
Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than &
/|
)
In [222]: df.query('a < b & b < c') Out[222]: a b c 0 7 8 9
Use English instead of symbols
In [223]: df.query('a < b and b < c') Out[223]: a b c 0 7 8 9
Pretty close to how you might write it on paper
In [224]: df.query('a < b < c') Out[224]: a b c 0 7 8 9
The in
and not in
operators
query()
also supports special use of Python’s in
and not in
comparison operators, providing a succinct syntax for calling the isin
method of a Series
or DataFrame
.
# get all rows where columns "a" and "b" have overlapping values In [225]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'), .....: 'c': np.random.randint(5, size=12), .....: 'd': np.random.randint(9, size=12)}) .....: In [226]: df Out[226]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 In [227]: df.query('a in b') Out[227]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 # How you'd do it in pure Python In [228]: df[df.a.isin(df.b)] Out[228]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 In [229]: df.query('a not in b') Out[229]: a b c d 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 # pure Python In [230]: df[~df.a.isin(df.b)] Out[230]: a b c d 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2
You can combine this with other expressions for very succinct queries:
# rows where cols a and b have overlapping values and col c's values are less than col d's In [231]: df.query('a in b and c < d') Out[231]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 4 c b 3 6 5 c b 0 2 # pure Python In [232]: df[df.b.isin(df.a) & (df.c < df.d)] Out[232]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 4 c b 3 6 5 c b 0 2 10 f c 0 6 11 f c 1 2
Note
Note that in
and not in
are evaluated in Python, since numexpr
has no equivalent of this operation. However, only the in
/not in
expression itself is evaluated in vanilla Python. For example, in the expression
df.query('a in b + c + d')
(b + c + d)
is evaluated by numexpr
and then the in
operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr
will be.
Special use of the ==
operator with list
objects
Comparing a list
of values to a column using ==
/!=
works similarly to in
/not in
In [233]: df.query('b == ["a", "b", "c"]') Out[233]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 # pure Python In [234]: df[df.b.isin(["a", "b", "c"])] Out[234]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 In [235]: df.query('c == [1, 2]') Out[235]: a b c d 0 a a 2 6 2 b a 1 6 3 b a 2 1 7 d b 2 1 9 e c 2 0 11 f c 1 2 In [236]: df.query('c != [1, 2]') Out[236]: a b c d 1 a a 4 7 4 c b 3 6 5 c b 0 2 6 d b 3 3 8 e c 4 3 10 f c 0 6 # using in/not in In [237]: df.query('[1, 2] in c') Out[237]: a b c d 0 a a 2 6 2 b a 1 6 3 b a 2 1 7 d b 2 1 9 e c 2 0 11 f c 1 2 In [238]: df.query('[1, 2] not in c') Out[238]: a b c d 1 a a 4 7 4 c b 3 6 5 c b 0 2 6 d b 3 3 8 e c 4 3 10 f c 0 6 # pure Python In [239]: df[df.c.isin([1, 2])] Out[239]: a b c d 0 a a 2 6 2 b a 1 6 3 b a 2 1 7 d b 2 1 9 e c 2 0 11 f c 1 2
Boolean Operators
You can negate boolean expressions with the word not
or the ~
operator.
In [240]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) In [241]: df['bools'] = np.random.rand(len(df)) > 0.5 In [242]: df.query('~bools') Out[242]: a b c bools 2 0.697753 0.212799 0.329209 False 7 0.275396 0.691034 0.826619 False 8 0.190649 0.558748 0.262467 False In [243]: df.query('not bools') Out[243]: a b c bools 2 0.697753 0.212799 0.329209 False 7 0.275396 0.691034 0.826619 False 8 0.190649 0.558748 0.262467 False In [244]: df.query('not bools') == df[~df.bools] Out[244]: a b c bools 2 True True True True 7 True True True True 8 True True True True
Of course, expressions can be arbitrarily complex too
# short query syntax In [245]: shorter = df.query('a < b < c and (not bools) or bools > 2') # equivalent in pure Python In [246]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)] In [247]: shorter Out[247]: a b c bools 7 0.275396 0.691034 0.826619 False In [248]: longer Out[248]: a b c bools 7 0.275396 0.691034 0.826619 False In [249]: shorter == longer Out[249]: a b c bools 7 True True True True
Performance of query()
DataFrame.query()
using numexpr
is slightly faster than Python for large frames
Note
You will only see the performance benefits of using the numexpr
engine with DataFrame.query()
if your frame has more than approximately 200,000 rows
This plot was created using a DataFrame
with 3 columns each containing floating point values generated using numpy.random.randn()
.
Duplicate Data
If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated
and drop_duplicates
. Each takes as an argument the columns to use to identify duplicated rows.
-
duplicated
returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated. -
drop_duplicates
removes duplicate rows.
By default, the first observed row of a duplicate set is considered unique, but each method has a keep
parameter to specify targets to be kept.
-
keep='first'
(default): mark / drop duplicates except for the first occurrence. -
keep='last'
: mark / drop duplicates except for the last occurrence. -
keep=False
: mark / drop all duplicates.
In [250]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'], .....: 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'], .....: 'c': np.random.randn(7)}) .....: In [251]: df2 Out[251]: a b c 0 one x -1.067137 1 one y 0.309500 2 two x -0.211056 3 two y -1.842023 4 two x -0.390820 5 three x -1.964475 6 four x 1.298329 In [252]: df2.duplicated('a') Out[252]: 0 False 1 True 2 False 3 True 4 True 5 False 6 False dtype: bool In [253]: df2.duplicated('a', keep='last') Out[253]: 0 True 1 False 2 True 3 True 4 False 5 False 6 False dtype: bool In [254]: df2.duplicated('a', keep=False) Out[254]: 0 True 1 True 2 True 3 True 4 True 5 False 6 False dtype: bool In [255]: df2.drop_duplicates('a') Out[255]: a b c 0 one x -1.067137 2 two x -0.211056 5 three x -1.964475 6 four x 1.298329 In [256]: df2.drop_duplicates('a', keep='last') Out[256]: a b c 1 one y 0.309500 4 two x -0.390820 5 three x -1.964475 6 four x 1.298329 In [257]: df2.drop_duplicates('a', keep=False) Out[257]: a b c 5 three x -1.964475 6 four x 1.298329
Also, you can pass a list of columns to identify duplications.
In [258]: df2.duplicated(['a', 'b']) Out[258]: 0 False 1 False 2 False 3 False 4 True 5 False 6 False dtype: bool In [259]: df2.drop_duplicates(['a', 'b']) Out[259]: a b c 0 one x -1.067137 1 one y 0.309500 2 two x -0.211056 3 two y -1.842023 5 three x -1.964475 6 four x 1.298329
To drop duplicates by index value, use Index.duplicated
then perform slicing. Same options are available in keep
parameter.
In [260]: df3 = pd.DataFrame({'a': np.arange(6), .....: 'b': np.random.randn(6)}, .....: index=['a', 'a', 'b', 'c', 'b', 'a']) .....: In [261]: df3 Out[261]: a b a 0 1.440455 a 1 2.456086 b 2 1.038402 c 3 -0.894409 b 4 0.683536 a 5 3.082764 In [262]: df3.index.duplicated() Out[262]: array([False, True, False, False, True, True], dtype=bool) In [263]: df3[~df3.index.duplicated()] Out[263]: a b a 0 1.440455 b 2 1.038402 c 3 -0.894409 In [264]: df3[~df3.index.duplicated(keep='last')] Out[264]: a b c 3 -0.894409 b 4 0.683536 a 5 3.082764 In [265]: df3[~df3.index.duplicated(keep=False)] Out[265]: a b c 3 -0.894409
Dictionary-like get()
method
Each of Series, DataFrame, and Panel have a get
method which can return a default value.
In [266]: s = pd.Series([1,2,3], index=['a','b','c']) In [267]: s.get('a') # equivalent to s['a'] Out[267]: 1 In [268]: s.get('x', default=-1) Out[268]: -1
The select()
Method
Another way to extract slices from an object is with the select
method of Series, DataFrame, and Panel. This method should be used only when there is no more direct way. select
takes a function which operates on labels along axis
and returns a boolean. For instance:
In [269]: df.select(lambda x: x == 'A', axis=1) Out[269]: A 2000-01-01 0.355794 2000-01-02 1.635763 2000-01-03 0.854409 2000-01-04 -0.216659 2000-01-05 2.414688 2000-01-06 -1.206215 2000-01-07 0.779461 2000-01-08 -0.878999
The lookup()
Method
Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup
method allows for this and returns a numpy array. For instance,
In [270]: dflookup = pd.DataFrame(np.random.rand(20,4), columns = ['A','B','C','D']) In [271]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D']) Out[271]: array([ 0.3506, 0.4779, 0.4825, 0.9197, 0.5019])
Index objects
The pandas Index
class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index
object with duplicate entries into a set
, an exception will be raised.
Index
also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index
directly is to pass a list
or other sequence to Index
:
In [272]: index = pd.Index(['e', 'd', 'a', 'b']) In [273]: index Out[273]: Index([u'e', u'd', u'a', u'b'], dtype='object') In [274]: 'd' in index Out[274]: True
You can also pass a name
to be stored in the index:
In [275]: index = pd.Index(['e', 'd', 'a', 'b'], name='something') In [276]: index.name Out[276]: 'something'
The name, if set, will be shown in the console display:
In [277]: index = pd.Index(list(range(5)), name='rows') In [278]: columns = pd.Index(['A', 'B', 'C'], name='cols') In [279]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns) In [280]: df Out[280]: cols A B C rows 0 1.295989 0.185778 0.436259 1 0.678101 0.311369 -0.528378 2 -0.674808 -1.103529 -0.656157 3 1.889957 2.076651 -1.102192 4 -1.211795 -0.791746 0.634724 In [281]: df['A'] Out[281]: rows 0 1.295989 1 0.678101 2 -0.674808 3 1.889957 4 -1.211795 Name: A, dtype: float64
Setting metadata
New in version 0.13.0.
Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the index name
(or, for MultiIndex
, levels
and labels
).
You can use the rename
, set_names
, set_levels
, and set_labels
to set these attributes directly. They default to returning a copy; however, you can specify inplace=True
to have the data change in place.
See Advanced Indexing for usage of MultiIndexes.
In [282]: ind = pd.Index([1, 2, 3]) In [283]: ind.rename("apple") Out[283]: Int64Index([1, 2, 3], dtype='int64', name=u'apple') In [284]: ind Out[284]: Int64Index([1, 2, 3], dtype='int64') In [285]: ind.set_names(["apple"], inplace=True) In [286]: ind.name = "bob" In [287]: ind Out[287]: Int64Index([1, 2, 3], dtype='int64', name=u'bob')
New in version 0.15.0.
set_names
, set_levels
, and set_labels
also take an optional level`
argument
In [288]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second']) In [289]: index Out[289]: MultiIndex(levels=[[0, 1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=[u'first', u'second']) In [290]: index.levels[1] Out[290]: Index([u'one', u'two'], dtype='object', name=u'second') In [291]: index.set_levels(["a", "b"], level=1) Out[291]: MultiIndex(levels=[[0, 1, 2], [u'a', u'b']], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=[u'first', u'second'])
Set operations on Index objects
Warning
In 0.15.0. the set operations +
and -
were deprecated in order to provide these for numeric type operations on certain index types. +
can be replace by .union()
or |
, and -
by .difference()
.
The two main operations are union (|)
, intersection (&)
These can be directly called as instance methods or used via overloaded operators. Difference is provided via the .difference()
method.
In [292]: a = pd.Index(['c', 'b', 'a']) In [293]: b = pd.Index(['c', 'e', 'd']) In [294]: a | b Out[294]: Index([u'a', u'b', u'c', u'd', u'e'], dtype='object') In [295]: a & b Out[295]: Index([u'c'], dtype='object') In [296]: a.difference(b) Out[296]: Index([u'a', u'b'], dtype='object')
Also available is the symmetric_difference (^)
operation, which returns elements that appear in either idx1
or idx2
but not both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1))
, with duplicates dropped.
In [297]: idx1 = pd.Index([1, 2, 3, 4]) In [298]: idx2 = pd.Index([2, 3, 4, 5]) In [299]: idx1.symmetric_difference(idx2) Out[299]: Int64Index([1, 5], dtype='int64') In [300]: idx1 ^ idx2 Out[300]: Int64Index([1, 5], dtype='int64')
Missing values
New in version 0.17.1.
Important
Even though Index
can hold missing values (NaN
), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly.
Index.fillna
fills missing values with specified scalar value.
In [301]: idx1 = pd.Index([1, np.nan, 3, 4]) In [302]: idx1 Out[302]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64') In [303]: idx1.fillna(2) Out[303]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64') In [304]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) In [305]: idx2 Out[305]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None) In [306]: idx2.fillna(pd.Timestamp('2011-01-02')) Out[306]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)
Set / Reset Index
Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways.
Set an index
DataFrame has a set_index
method which takes a column name (for a regular Index
) or a list of column names (for a MultiIndex
), to create a new, indexed DataFrame:
In [307]: data Out[307]: a b c d 0 bar one z 1.0 1 bar two y 2.0 2 foo one x 3.0 3 foo two w 4.0 In [308]: indexed1 = data.set_index('c') In [309]: indexed1 Out[309]: a b d c z bar one 1.0 y bar two 2.0 x foo one 3.0 w foo two 4.0 In [310]: indexed2 = data.set_index(['a', 'b']) In [311]: indexed2 Out[311]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0
The append
keyword option allow you to keep the existing index and append the given columns to a MultiIndex:
In [312]: frame = data.set_index('c', drop=False) In [313]: frame = frame.set_index(['a', 'b'], append=True) In [314]: frame Out[314]: c d c a b z bar one z 1.0 y bar two y 2.0 x foo one x 3.0 w foo two w 4.0
Other options in set_index
allow you not drop the index columns or to add the index in-place (without creating a new object):
In [315]: data.set_index('c', drop=False) Out[315]: a b c d c z bar one z 1.0 y bar two y 2.0 x foo one x 3.0 w foo two w 4.0 In [316]: data.set_index(['a', 'b'], inplace=True) In [317]: data Out[317]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0
Reset the index
As a convenience, there is a new function on DataFrame called reset_index
which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation to set_index
In [318]: data Out[318]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0 In [319]: data.reset_index() Out[319]: a b c d 0 bar one z 1.0 1 bar two y 2.0 2 foo one x 3.0 3 foo two w 4.0
The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the names
attribute.
You can use the level
keyword to remove only a portion of the index:
In [320]: frame Out[320]: c d c a b z bar one z 1.0 y bar two y 2.0 x foo one x 3.0 w foo two w 4.0 In [321]: frame.reset_index(level=1) Out[321]: a c d c b z one bar z 1.0 y two bar y 2.0 x one foo x 3.0 w two foo w 4.0
reset_index
takes an optional parameter drop
which if true simply discards the index, instead of putting index values in the DataFrame’s columns.
Note
The reset_index
method used to be called delevel
which is now deprecated.
Adding an ad hoc index
If you create an index yourself, you can just assign it to the index
field:
data.index = index
Returning a view versus a copy
When setting values in a pandas object, care must be taken to avoid what is called chained indexing
. Here is an example.
In [322]: dfmi = pd.DataFrame([list('abcd'), .....: list('efgh'), .....: list('ijkl'), .....: list('mnop')], .....: columns=pd.MultiIndex.from_product([['one','two'], .....: ['first','second']])) .....: In [323]: dfmi Out[323]: one two first second first second 0 a b c d 1 e f g h 2 i j k l 3 m n o p
Compare these two access methods:
In [324]: dfmi['one']['second'] Out[324]: 0 b 1 f 2 j 3 n Name: second, dtype: object
In [325]: dfmi.loc[:,('one','second')] Out[325]: 0 b 1 f 2 j 3 n Name: (one, second), dtype: object
These both yield the same results, so which should you use? It is instructive to understand the order of operations on these and why method 2 (.loc
) is much preferred over method 1 (chained []
)
dfmi['one']
selects the first level of the columns and returns a DataFrame that is singly-indexed. Then another python operation dfmi_with_one['second']
selects the series indexed by 'second'
happens. This is indicated by the variable dfmi_with_one
because pandas sees these operations as separate events. e.g. separate calls to __getitem__
, so it has to treat them as linear operations, they happen one after another.
Contrast this to df.loc[:,('one','second')]
which passes a nested tuple of (slice(None),('one','second'))
to a single call to __getitem__
. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index both axes if so desired.
Why does assignment fail when using chained indexing?
The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy
warning? We don’t usually throw warnings around when you do something that might cost a few extra milliseconds!
But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this, think about how the Python interpreter executes this code:
dfmi.loc[:,('one','second')] = value # becomes dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)
But this code is handled differently:
dfmi['one']['second'] = value # becomes dfmi.__getitem__('one').__setitem__('second', value)
See that __getitem__
in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether the __setitem__
will modify dfmi
or a temporary object that gets thrown out immediately afterward. That’s what SettingWithCopy
is warning you about!
Note
You may be wondering whether we should be concerned about the loc
property in the first example. But dfmi.loc
is guaranteed to be dfmi
itself with modified indexing behavior, so dfmi.loc.__getitem__
/ dfmi.loc.__setitem__
operate on dfmi
directly. Of course, dfmi.loc.__getitem__(idx)
may be a view or a copy of dfmi
.
Sometimes a SettingWithCopy
warning will arise at times when there’s no obvious chained indexing going on. These are the bugs that SettingWithCopy
is designed to catch! Pandas is probably trying to warn you that you’ve done this:
def do_something(df): foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows! # ... many lines here ... foo['quux'] = value # We don't know whether this will modify df or not! return foo
Yikes!
Evaluation order matters
Furthermore, in chained expressions, the order may determine whether a copy is returned or not. If an expression will set values on a copy of a slice, then a SettingWithCopy
exception will be raised (this raise/warn behavior is new starting in 0.13.0)
You can control the action of a chained assignment via the option mode.chained_assignment
, which can take the values ['raise','warn',None]
, where showing a warning is the default.
In [326]: dfb = pd.DataFrame({'a' : ['one', 'one', 'two', .....: 'three', 'two', 'one', 'six'], .....: 'c' : np.arange(7)}) .....: # This will show the SettingWithCopyWarning # but the frame values will be set In [327]: dfb['c'][dfb.a.str.startswith('o')] = 42
This however is operating on a copy and will not work.
>>> pd.set_option('mode.chained_assignment','warn') >>> dfb[dfb.a.str.startswith('o')]['c'] = 42 Traceback (most recent call last) ... SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead
A chained assignment can also crop up in setting in a mixed dtype frame.
Note
These setting rules apply to all of .loc/.iloc/.ix
This is the correct access method
In [328]: dfc = pd.DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]}) In [329]: dfc.loc[0,'A'] = 11 In [330]: dfc Out[330]: A B 0 11 1 1 bbb 2 2 ccc 3
This can work at times, but is not guaranteed, and so should be avoided
In [331]: dfc = dfc.copy() In [332]: dfc['A'][0] = 111 In [333]: dfc Out[333]: A B 0 111 1 1 bbb 2 2 ccc 3
This will not work at all, and so should be avoided
>>> pd.set_option('mode.chained_assignment','raise') >>> dfc.loc[0]['A'] = 1111 Traceback (most recent call last) ... SettingWithCopyException: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead
Warning
The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.19.2/indexing.html