pandas.Series.groupby
-
Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
[source] -
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
Parameters: by : mapping function / list of functions, dict, Series, or tuple /
list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups
axis : int, default 0
level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels
as_index : boolean, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output
sort : boolean, default True
Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.
group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
squeeze : boolean, default False
reduce the dimensionality of the return type if possible, otherwise return a consistent type
Returns: GroupBy object
Examples
DataFrame results
>>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean()
DataFrame with hierarchical index
>>> data.groupby(['col1', 'col2']).mean()
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.19.2/generated/pandas.Series.groupby.html