numpy.left_shift
-
numpy.left_shift(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'left_shift'>
-
Shift the bits of an integer to the left.
Bits are shifted to the left by appending
x2
0s at the right ofx1
. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplyingx1
by2**x2
.Parameters: x1 : array_like of integer type
Input values.
x2 : array_like of integer type
Number of zeros to append to
x1
. Has to be non-negative.out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None
, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs
For other keyword-only arguments, see the ufunc docs.
Returns: out : array of integer type
Return
x1
with bits shiftedx2
times to the left.See also
-
right_shift
- Shift the bits of an integer to the right.
-
binary_repr
- Return the binary representation of the input number as a string.
Examples
>>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100'
>>> np.left_shift(5, [1,2,3]) array([10, 20, 40])
-
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.left_shift.html