numpy.heaviside

numpy.heaviside(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'heaviside'>

Compute the Heaviside step function.

The Heaviside step function is defined as:

                     0   if x < 0
heaviside(x, h0) =  h0   if x == 0
                     1   if x > 0

where h0 is often taken to be 0.5, but 0 and 1 are also sometimes used.

Parameters:

x : array_like

Input values.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

h0 : array_like

The value of the function at x = 0.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:

out : ndarray

The output array, element-wise Heaviside step function of x.

Notes

New in version 1.13.0.

References

Examples

>>> np.heaviside([-1.5, 0, 2.0], 0.5)
array([ 0. ,  0.5,  1. ])
>>> np.heaviside([-1.5, 0, 2.0], 1)
array([ 0.,  1.,  1.])

© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.heaviside.html