matplotlib.projections
-
class matplotlib.projections.ProjectionRegistry[source] -
Bases:
objectA mapping of registered projection names to projection classes.
-
get_projection_class(self, name)[source] -
Get a projection class from its name.
-
get_projection_names(self)[source] -
Return the names of all projections currently registered.
-
register(self, *projections)[source] -
Register a new set of projections.
-
-
matplotlib.projections.get_projection_class(projection=None)[source] -
Get a projection class from its name.
If projection is None, a standard rectilinear projection is returned.
-
matplotlib.projections.get_projection_names() -
Return the names of all projections currently registered.
-
matplotlib.projections.process_projection_requirements(figure, *args, **kwargs)[source] -
[Deprecated]
Notes
Deprecated since version 3.1:
-
matplotlib.projections.register_projection(cls)[source]
matplotlib.projections.polar
-
class matplotlib.projections.polar.InvertedPolarTransform(axis=None, use_rmin=True, _apply_theta_transforms=True)[source] -
Bases:
matplotlib.transforms.TransformThe inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta and r.
Creates a new
TransformNode.Parameters: -
shorthand_namestr -
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse = True
-
input_dims = 2
-
inverted(self)[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = False
-
output_dims = 2
-
transform_non_affine(self, xy)[source] -
Performs only the non-affine part of the transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: -
valuesarray -
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: -
valuesarray -
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
-
-
class matplotlib.projections.polar.PolarAffine(scale_transform, limits)[source] -
Bases:
matplotlib.transforms.Affine2DBaseThe affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle.
limits is the view limit of the data. The only part of its bounds that is used is the y limits (for the radius limits). The theta range is handled by the non-affine transform.
-
get_matrix(self)[source] -
Get the Affine transformation array for the affine part of this transform.
-
-
class matplotlib.projections.polar.PolarAxes(*args, theta_offset=0, theta_direction=1, rlabel_position=22.5, **kwargs)[source] -
Bases:
matplotlib.axes._axes.AxesA polar graph projection, where the input dimensions are theta, r.
Theta starts pointing east and goes anti-clockwise.
Build an axes in a figure.
Parameters: -
figFigure -
The axes is build in the
Figurefig. -
rect[left, bottom, width, height] -
The axes is build in the rectangle rect. rect is in
Figurecoordinates. -
sharex, shareyAxes, optional -
The x or y
axisis shared with the x or y axis in the inputAxes. -
frameonbool, optional -
True means that the axes frame is visible.
- **kwargs
-
Other optional keyword arguments:
Property Description adjustable{'box', 'datalim'} agg_filtera filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array alphafloat or None anchor2-tuple of floats or {'C', 'SW', 'S', 'SE', ...} animatedbool aspect{'auto', 'equal'} or num autoscale_onbool autoscalex_onbool autoscaley_onbool axes_locatorCallable[[Axes, Renderer], Bbox] axisbelowbool or 'line' clip_boxBboxclip_onbool clip_pathPatch or (Path, Transform) or None containscallable facecolorcolor fccolor figureFigureframe_onbool gidstr in_layoutbool labelobject navigatebool navigate_modeunknown path_effectsAbstractPathEffectpickerNone or bool or float or callable position[left, bottom, width, height] or Bboxprop_cycleunknown rasterization_zorderfloat or None rasterizedbool or None sketch_params(scale: float, length: float, randomness: float) snapbool or None titlestr transformTransformurlstr visiblebool xboundunknown xlabelstr xlim(bottom: float, top: float) xmarginfloat greater than -0.5 xscale{"linear", "log", "symlog", "logit", ...} xticklabelsList[str] xticksunknown yboundunknown ylabelstr ylim(bottom: float, top: float) ymarginfloat greater than -0.5 yscale{"linear", "log", "symlog", "logit", ...} yticklabelsList[str] yticksunknown zorderfloat
Returns: -
axesAxes -
The new
Axesobject.
-
class InvertedPolarTransform(axis=None, use_rmin=True, _apply_theta_transforms=True) -
Bases:
matplotlib.transforms.TransformThe inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta and r.
Creates a new
TransformNode.Parameters: -
shorthand_namestr -
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse = True
-
input_dims = 2
-
inverted(self) -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = False
-
output_dims = 2
-
transform_non_affine(self, xy) -
Performs only the non-affine part of the transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: -
valuesarray -
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: -
valuesarray -
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
-
-
class PolarAffine(scale_transform, limits) -
Bases:
matplotlib.transforms.Affine2DBaseThe affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle.
limits is the view limit of the data. The only part of its bounds that is used is the y limits (for the radius limits). The theta range is handled by the non-affine transform.
-
get_matrix(self) -
Get the Affine transformation array for the affine part of this transform.
-
-
class PolarTransform(axis=None, use_rmin=True, _apply_theta_transforms=True) -
Bases:
matplotlib.transforms.TransformThe base polar transform. This handles projection theta and r into Cartesian coordinate space x and y, but does not perform the ultimate affine transformation into the correct position.
Creates a new
TransformNode.Parameters: -
shorthand_namestr -
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse = True
-
input_dims = 2
-
inverted(self) -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = False
-
output_dims = 2
-
transform_non_affine(self, tr) -
Performs only the non-affine part of the transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: -
valuesarray -
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: -
valuesarray -
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
-
transform_path_non_affine(self, path) -
Returns a path, transformed only by the non-affine part of this transform.
path: a
Pathinstance.transform_path(path)is equivalent totransform_path_affine(transform_path_non_affine(values)).
-
-
class RadialLocator(base, axes=None) -
Bases:
matplotlib.ticker.LocatorUsed to locate radius ticks.
Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base
Locator(which may be different depending on the scale of the r-axis.-
autoscale(self) -
[Deprecated]
Notes
Deprecated since version 3.2:
-
nonsingular(self, vmin, vmax) -
Adjust a range as needed to avoid singularities.
This method gets called during autoscaling, with
(v0, v1)set to the data limits on the axes if the axes contains any data, or(-inf, +inf)if not.- If
v0 == v1(possibly up to some floating point slop), this method returns an expanded interval around this value. - If
(v0, v1) == (-inf, +inf), this method returns appropriate default view limits. - Otherwise,
(v0, v1)is returned without modification.
- If
-
pan(self, numsteps) -
Pan numticks (can be positive or negative)
-
refresh(self) -
Refresh internal information based on current limits.
-
view_limits(self, vmin, vmax) -
Select a scale for the range from vmin to vmax.
Subclasses should override this method to change locator behaviour.
-
zoom(self, direction) -
Zoom in/out on axis; if direction is >0 zoom in, else zoom out
-
-
class ThetaFormatter -
Bases:
matplotlib.ticker.FormatterUsed to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol.
-
class ThetaLocator(base) -
Bases:
matplotlib.ticker.LocatorUsed to locate theta ticks.
This will work the same as the base locator except in the case that the view spans the entire circle. In such cases, the previously used default locations of every 45 degrees are returned.
-
autoscale(self) -
[Deprecated]
Notes
Deprecated since version 3.2:
-
pan(self, numsteps) -
Pan numticks (can be positive or negative)
-
refresh(self) -
Refresh internal information based on current limits.
-
set_axis(self, axis)
-
view_limits(self, vmin, vmax) -
Select a scale for the range from vmin to vmax.
Subclasses should override this method to change locator behaviour.
-
zoom(self, direction) -
Zoom in/out on axis; if direction is >0 zoom in, else zoom out
-
-
can_pan(self)[source] -
Return True if this axes supports the pan/zoom button functionality.
For polar axes, this is slightly misleading. Both panning and zooming are performed by the same button. Panning is performed in azimuth while zooming is done along the radial.
-
can_zoom(self)[source] -
Return True if this axes supports the zoom box button functionality.
Polar axes do not support zoom boxes.
-
cla(self)[source] -
Clear the current axes.
-
drag_pan(self, button, key, x, y)[source] -
Called when the mouse moves during a pan operation.
button is the mouse button number:
- 1: LEFT
- 2: MIDDLE
- 3: RIGHT
key is a "shift" key
x, y are the mouse coordinates in display coords.
Note
Intended to be overridden by new projection types.
-
draw(self, *args, **kwargs)[source] -
Draw everything (plot lines, axes, labels)
-
end_pan(self)[source] -
Called when a pan operation completes (when the mouse button is up.)
Note
Intended to be overridden by new projection types.
-
format_coord(self, theta, r)[source] -
Return a format string formatting the coordinate using Unicode characters.
-
get_data_ratio(self)[source] -
Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0
-
get_rlabel_position(self)[source] -
Returns: - float
-
The theta position of the radius labels in degrees.
-
get_rmax(self)[source] -
Returns: - float
-
Outer radial limit.
-
get_rmin(self)[source] -
Returns: - float
-
The inner radial limit.
-
get_rorigin(self)[source] -
Returns: - float
-
get_rsign(self)[source]
-
get_theta_direction(self)[source] -
Get the direction in which theta increases.
- -1:
- Theta increases in the clockwise direction
- 1:
- Theta increases in the counterclockwise direction
-
get_theta_offset(self)[source] -
Get the offset for the location of 0 in radians.
-
get_thetamax(self)[source] -
Return the maximum theta limit in degrees.
-
get_thetamin(self)[source] -
Get the minimum theta limit in degrees.
-
get_xaxis_text1_transform(self, pad)[source] -
Returns: -
transformTransform -
The transform used for drawing x-axis labels, which will add pad_points of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis corrdinates
-
valign{'center', 'top', 'bottom', 'baseline', 'center_baseline'} -
The text vertical alignment.
-
halign{'center', 'left', 'right'} -
The text horizontal alignment.
Notes
This transformation is primarily used by the
Axisclass, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. -
-
get_xaxis_text2_transform(self, pad)[source] -
Returns: -
transformTransform -
The transform used for drawing secondary x-axis labels, which will add pad_points of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis corrdinates
-
valign{'center', 'top', 'bottom', 'baseline', 'center_baseline'} -
The text vertical alignment.
-
halign{'center', 'left', 'right'} -
The text horizontal alignment.
Notes
This transformation is primarily used by the
Axisclass, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. -
-
get_xaxis_transform(self, which='grid')[source] -
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates.
Note
This transformation is primarily used by the
Axisclass, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
-
get_yaxis_text1_transform(self, pad)[source] -
Returns: -
transformTransform -
The transform used for drawing y-axis labels, which will add pad_points of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data corrdinates
-
valign{'center', 'top', 'bottom', 'baseline', 'center_baseline'} -
The text vertical alignment.
-
halign{'center', 'left', 'right'} -
The text horizontal alignment.
Notes
This transformation is primarily used by the
Axisclass, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. -
-
get_yaxis_text2_transform(self, pad)[source] -
Returns: -
transformTransform -
The transform used for drawing secondart y-axis labels, which will add pad_points of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data corrdinates
-
valign{'center', 'top', 'bottom', 'baseline', 'center_baseline'} -
The text vertical alignment.
-
halign{'center', 'left', 'right'} -
The text horizontal alignment.
Notes
This transformation is primarily used by the
Axisclass, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. -
-
get_yaxis_transform(self, which='grid')[source] -
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates.
Note
This transformation is primarily used by the
Axisclass, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
-
name = 'polar'
-
set_rgrids(self, radii, labels=None, angle=None, fmt=None, **kwargs)[source] -
Set the radial gridlines on a polar plot.
Parameters: -
radiituple with floats -
The radii for the radial gridlines
-
labelstuple with strings or None -
The labels to use at each radial gridline. The
matplotlib.ticker.ScalarFormatterwill be used if None. -
anglefloat -
The angular position of the radius labels in degrees.
-
fmtstr or None -
Format string used in
matplotlib.ticker.FormatStrFormatter. For example '%f'.
Returns: -
lines, labelslist of lines.Line2D, list of text.Text -
lines are the radial gridlines and labels are the tick labels.
Other Parameters: - **kwargs
-
kwargs are optional
Textproperties for the labels.
-
-
set_rlabel_position(self, value)[source] -
Updates the theta position of the radius labels.
Parameters: -
valuenumber -
The angular position of the radius labels in degrees.
-
-
set_rmax(self, rmax)[source] -
Set the outer radial limit.
Parameters: -
rmaxfloat
-
-
set_rmin(self, rmin)[source] -
Set the inner radial limit.
Parameters: -
rminfloat
-
-
set_rorigin(self, rorigin)[source] -
Update the radial origin.
Parameters: -
roriginfloat
-
-
set_rscale(self, *args, **kwargs)[source]
-
set_rticks(self, *args, **kwargs)[source]
-
set_theta_direction(self, direction)[source] -
Set the direction in which theta increases.
- clockwise, -1:
- Theta increases in the clockwise direction
- counterclockwise, anticlockwise, 1:
- Theta increases in the counterclockwise direction
-
set_theta_offset(self, offset)[source] -
Set the offset for the location of 0 in radians.
-
set_theta_zero_location(self, loc, offset=0.0)[source] -
Sets the location of theta's zero. (Calls set_theta_offset with the correct value in radians under the hood.)
-
locstr - May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE".
-
offsetfloat, optional - An offset in degrees to apply from the specified
loc. Note: this offset is always applied counter-clockwise regardless of the direction setting.
-
-
set_thetagrids(self, angles, labels=None, fmt=None, **kwargs)[source] -
Set the theta gridlines in a polar plot.
Parameters: -
anglestuple with floats, degrees -
The angles of the theta gridlines.
-
labelstuple with strings or None -
The labels to use at each theta gridline. The
projections.polar.ThetaFormatterwill be used if None. -
fmtstr or None -
Format string used in
matplotlib.ticker.FormatStrFormatter. For example '%f'. Note that the angle that is used is in radians.
Returns: -
lines, labelslist of lines.Line2D, list of text.Text -
lines are the theta gridlines and labels are the tick labels.
Other Parameters: - **kwargs
-
kwargs are optional
Textproperties for the labels.
-
-
set_thetalim(self, *args, **kwargs)[source] -
Set the minimum and maximum theta values.
Parameters: -
thetaminfloat -
Minimum value in degrees.
-
thetamaxfloat -
Maximum value in degrees.
-
-
set_thetamax(self, thetamax)[source] -
Set the maximum theta limit in degrees.
-
set_thetamin(self, thetamin)[source] -
Set the minimum theta limit in degrees.
-
set_xscale(self, scale, *args, **kwargs)[source] -
Set the x-axis scale.
Parameters: -
value{"linear", "log", "symlog", "logit", ...} -
The axis scale type to apply.
- **kwargs
-
Different keyword arguments are accepted, depending on the scale. See the respective class keyword arguments:
Notes
By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be registered using
matplotlib.scale.register_scale. These scales can then also be used here. -
-
set_ylim(self, bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None)[source] -
Set the data limits for the radial axis.
Parameters: -
bottomscalar, optional -
The bottom limit (default: None, which leaves the bottom limit unchanged). The bottom and top ylims may be passed as the tuple (bottom, top) as the first positional argument (or as the bottom keyword argument).
-
topscalar, optional -
The top limit (default: None, which leaves the top limit unchanged).
-
emitbool, optional -
Whether to notify observers of limit change (default: True).
-
autobool or None, optional -
Whether to turn on autoscaling of the y-axis. True turns on, False turns off (default action), None leaves unchanged.
-
ymin, ymaxscalar, optional -
These arguments are deprecated and will be removed in a future version. They are equivalent to bottom and top respectively, and it is an error to pass both ymin and bottom or ymax and top.
Returns: -
bottom, top(float, float) -
The new y-axis limits in data coordinates.
-
-
set_yscale(self, *args, **kwargs)[source] -
Set the y-axis scale.
Parameters: -
value{"linear", "log", "symlog", "logit", ...} -
The axis scale type to apply.
- **kwargs
-
Different keyword arguments are accepted, depending on the scale. See the respective class keyword arguments:
Notes
By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be registered using
matplotlib.scale.register_scale. These scales can then also be used here. -
-
start_pan(self, x, y, button)[source] -
Called when a pan operation has started.
x, y are the mouse coordinates in display coords. button is the mouse button number:
- 1: LEFT
- 2: MIDDLE
- 3: RIGHT
Note
Intended to be overridden by new projection types.
-
-
class matplotlib.projections.polar.PolarTransform(axis=None, use_rmin=True, _apply_theta_transforms=True)[source] -
Bases:
matplotlib.transforms.TransformThe base polar transform. This handles projection theta and r into Cartesian coordinate space x and y, but does not perform the ultimate affine transformation into the correct position.
Creates a new
TransformNode.Parameters: -
shorthand_namestr -
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)when DEBUG=True.
-
has_inverse = True
-
input_dims = 2
-
inverted(self)[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x)).The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = False
-
output_dims = 2
-
transform_non_affine(self, tr)[source] -
Performs only the non-affine part of the transformation.
transform(values)is always equivalent totransform_affine(transform_non_affine(values)).In non-affine transformations, this is generally equivalent to
transform(values). In affine transformations, this is always a no-op.Parameters: -
valuesarray -
The input values as NumPy array of length
input_dimsor shape (N xinput_dims).
Returns: -
valuesarray -
The output values as NumPy array of length
input_dimsor shape (N xoutput_dims), depending on the input.
-
-
-
class matplotlib.projections.polar.RadialAxis(*args, **kwargs)[source] -
Bases:
matplotlib.axis.YAxisA radial Axis.
This overrides certain properties of a
YAxisto provide special-casing for a radial axis.Parameters: -
axesmatplotlib.axes.Axes -
The
Axesto which the created Axis belongs. -
pickradiusfloat -
The acceptance radius for containment tests. See also
Axis.contains.
-
axis_name = 'radius' -
Read-only name identifying the axis.
-
cla(self)[source] -
Clear this axis.
-
-
class matplotlib.projections.polar.RadialLocator(base, axes=None)[source] -
Bases:
matplotlib.ticker.LocatorUsed to locate radius ticks.
Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base
Locator(which may be different depending on the scale of the r-axis.-
autoscale(self)[source] -
[Deprecated]
Notes
Deprecated since version 3.2:
-
nonsingular(self, vmin, vmax)[source] -
Adjust a range as needed to avoid singularities.
This method gets called during autoscaling, with
(v0, v1)set to the data limits on the axes if the axes contains any data, or(-inf, +inf)if not.- If
v0 == v1(possibly up to some floating point slop), this method returns an expanded interval around this value. - If
(v0, v1) == (-inf, +inf), this method returns appropriate default view limits. - Otherwise,
(v0, v1)is returned without modification.
- If
-
pan(self, numsteps)[source] -
Pan numticks (can be positive or negative)
-
refresh(self)[source] -
Refresh internal information based on current limits.
-
view_limits(self, vmin, vmax)[source] -
Select a scale for the range from vmin to vmax.
Subclasses should override this method to change locator behaviour.
-
zoom(self, direction)[source] -
Zoom in/out on axis; if direction is >0 zoom in, else zoom out
-
-
class matplotlib.projections.polar.RadialTick(axes, loc, label, size=None, width=None, color=None, tickdir=None, pad=None, labelsize=None, labelcolor=None, zorder=None, gridOn=None, tick1On=True, tick2On=True, label1On=True, label2On=False, major=True, labelrotation=0, grid_color=None, grid_linestyle=None, grid_linewidth=None, grid_alpha=None, **kw)[source] -
Bases:
matplotlib.axis.YTickA radial-axis tick.
This subclass of
YTickprovides radial ticks with some small modification to their re-positioning such that ticks are rotated based on axes limits. This results in ticks that are correctly perpendicular to the spine. Labels are also rotated to be perpendicular to the spine, when 'auto' rotation is enabled.bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords size is the tick size in points
-
update_position(self, loc)[source] -
Set the location of tick in data coords with scalar loc.
-
-
class matplotlib.projections.polar.ThetaAxis(axes, pickradius=15)[source] -
Bases:
matplotlib.axis.XAxisA theta Axis.
This overrides certain properties of an
XAxisto provide special-casing for an angular axis.Parameters: -
axesmatplotlib.axes.Axes -
The
Axesto which the created Axis belongs. -
pickradiusfloat -
The acceptance radius for containment tests. See also
Axis.contains.
-
axis_name = 'theta' -
Read-only name identifying the axis.
-
cla(self)[source] -
Clear this axis.
-
-
class matplotlib.projections.polar.ThetaFormatter[source] -
Bases:
matplotlib.ticker.FormatterUsed to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol.
-
class matplotlib.projections.polar.ThetaLocator(base)[source] -
Bases:
matplotlib.ticker.LocatorUsed to locate theta ticks.
This will work the same as the base locator except in the case that the view spans the entire circle. In such cases, the previously used default locations of every 45 degrees are returned.
-
autoscale(self)[source] -
[Deprecated]
Notes
Deprecated since version 3.2:
-
pan(self, numsteps)[source] -
Pan numticks (can be positive or negative)
-
refresh(self)[source] -
Refresh internal information based on current limits.
-
set_axis(self, axis)[source]
-
view_limits(self, vmin, vmax)[source] -
Select a scale for the range from vmin to vmax.
Subclasses should override this method to change locator behaviour.
-
zoom(self, direction)[source] -
Zoom in/out on axis; if direction is >0 zoom in, else zoom out
-
-
class matplotlib.projections.polar.ThetaTick(axes, *args, **kwargs)[source] -
Bases:
matplotlib.axis.XTickA theta-axis tick.
This subclass of
XTickprovides angular ticks with some small modification to their re-positioning such that ticks are rotated based on tick location. This results in ticks that are correctly perpendicular to the arc spine.When 'auto' rotation is enabled, labels are also rotated to be parallel to the spine. The label padding is also applied here since it's not possible to use a generic axes transform to produce tick-specific padding.
bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords size is the tick size in points
-
update_position(self, loc)[source] -
Set the location of tick in data coords with scalar loc.
-
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.2.2/api/projections_api.html