scale
matplotlib.scale
-
class matplotlib.scale.InvertedLog10Transform(shorthand_name=None)
[source] -
Bases:
matplotlib.scale.InvertedLogTransformBase
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
base = 10.0
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.InvertedLog2Transform(shorthand_name=None)
[source] -
Bases:
matplotlib.scale.InvertedLogTransformBase
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
base = 2.0
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.InvertedLogTransform(base)
[source] -
Bases:
matplotlib.scale.InvertedLogTransformBase
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.InvertedLogTransformBase(shorthand_name=None)
[source] -
Bases:
matplotlib.transforms.Transform
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
[source] -
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
class matplotlib.scale.InvertedNaturalLogTransform(shorthand_name=None)
[source] -
Bases:
matplotlib.scale.InvertedLogTransformBase
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
base = 2.718281828459045
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale)
[source] -
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
[source] -
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
class matplotlib.scale.LinearScale(axis, **kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
The default linear scale.
-
get_transform()
[source] -
The transform for linear scaling is just the
IdentityTransform
.
-
name = 'linear'
-
set_default_locators_and_formatters(axis)
[source] -
Set the locators and formatters to reasonable defaults for linear scaling.
-
-
class matplotlib.scale.Log10Transform(nonpos='clip')
[source] -
Bases:
matplotlib.scale.LogTransformBase
-
base = 10.0
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.Log2Transform(nonpos='clip')
[source] -
Bases:
matplotlib.scale.LogTransformBase
-
base = 2.0
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.LogScale(axis, **kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken so non-positive values are not plotted.
For computational efficiency (to push as much as possible to Numpy C code in the common cases), this scale provides different transforms depending on the base of the logarithm:
- base 10 (
Log10Transform
) - base 2 (
Log2Transform
) - base e (
NaturalLogTransform
) - arbitrary base (
LogTransform
)
- basex/basey:
- The base of the logarithm
- nonposx/nonposy: ['mask' | 'clip' ]
- non-positive values in x or y can be masked as invalid, or clipped to a very small positive number
- subsx/subsy:
-
Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale:
[2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
-
class InvertedLog10Transform(shorthand_name=None)
-
Bases:
matplotlib.scale.InvertedLogTransformBase
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
base = 10.0
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class InvertedLog2Transform(shorthand_name=None)
-
Bases:
matplotlib.scale.InvertedLogTransformBase
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
base = 2.0
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class InvertedLogTransform(base)
-
Bases:
matplotlib.scale.InvertedLogTransformBase
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class InvertedNaturalLogTransform(shorthand_name=None)
-
Bases:
matplotlib.scale.InvertedLogTransformBase
Creates a new
TransformNode
.Parameters: -
shorthand_name : str
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
base = 2.718281828459045
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class Log10Transform(nonpos='clip')
-
Bases:
matplotlib.scale.LogTransformBase
-
base = 10.0
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class Log2Transform(nonpos='clip')
-
Bases:
matplotlib.scale.LogTransformBase
-
base = 2.0
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class LogTransform(base, nonpos='clip')
-
Bases:
matplotlib.scale.LogTransformBase
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class LogTransformBase(nonpos='clip')
-
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
-
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
class NaturalLogTransform(nonpos='clip')
-
Bases:
matplotlib.scale.LogTransformBase
-
base = 2.718281828459045
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
limit_range_for_scale(vmin, vmax, minpos)
[source] -
Limit the domain to positive values.
-
name = 'log'
-
set_default_locators_and_formatters(axis)
[source] -
Set the locators and formatters to specialized versions for log scaling.
- base 10 (
-
class matplotlib.scale.LogTransform(base, nonpos='clip')
[source] -
Bases:
matplotlib.scale.LogTransformBase
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.LogTransformBase(nonpos='clip')
[source] -
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
[source] -
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
class matplotlib.scale.LogisticTransform(nonpos='mask')
[source] -
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
[source] -
logistic transform (base 10)
-
-
class matplotlib.scale.LogitScale(axis, nonpos='mask')
[source] -
Bases:
matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
- nonpos: ['mask' | 'clip' ]
- values beyond ]0, 1[ can be masked as invalid, or clipped to a number very close to 0 or 1
-
get_transform()
[source] -
Return a
LogitTransform
instance.
-
limit_range_for_scale(vmin, vmax, minpos)
[source] -
Limit the domain to values between 0 and 1 (excluded).
-
name = 'logit'
-
class matplotlib.scale.LogitTransform(nonpos='mask')
[source] -
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
[source] -
logit transform (base 10), masked or clipped
-
-
class matplotlib.scale.NaturalLogTransform(nonpos='clip')
[source] -
Bases:
matplotlib.scale.LogTransformBase
-
base = 2.718281828459045
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
-
class matplotlib.scale.ScaleBase
[source] -
Bases:
object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
- And optionally:
-
limit_range_for_scale(vmin, vmax, minpos)
[source] -
Returns the range vmin, vmax, possibly limited to the domain supported by this scale.
- minpos should be the minimum positive value in the data.
- This is used by log scales to determine a minimum value.
-
class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
- basex/basey:
- The base of the logarithm
- linthreshx/linthreshy:
- A single float which defines the range (-x, x), within which the plot is linear. This avoids having the plot go to infinity around zero.
- subsx/subsy:
-
Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale:
[2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
- linscalex/linscaley:
- This allows the linear range (-linthresh to linthresh) to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range.
-
class InvertedSymmetricalLogTransform(base, linthresh, linscale)
-
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
-
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
class SymmetricalLogTransform(base, linthresh, linscale)
-
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
inverted()
-
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
-
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
get_transform()
[source] -
Return a
SymmetricalLogTransform
instance.
-
name = 'symlog'
-
set_default_locators_and_formatters(axis)
[source] -
Set the locators and formatters to specialized versions for symmetrical log scaling.
-
class matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)
[source] -
Bases:
matplotlib.transforms.Transform
-
has_inverse = True
-
input_dims = 1
-
inverted()
[source] -
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(a)
[source] -
Performs only the non-affine part of the transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Accepts a numpy array of shape (N x
input_dims
) and returns a numpy array of shape (N xoutput_dims
).Alternatively, accepts a numpy array of length
input_dims
and returns a numpy array of lengthoutput_dims
.
-
-
matplotlib.scale.get_scale_docs()
[source] -
Helper function for generating docstrings related to scales.
-
matplotlib.scale.get_scale_names()
[source]
-
matplotlib.scale.register_scale(scale_class)
[source] -
Register a new kind of scale.
scale_class must be a subclass of
ScaleBase
.
-
matplotlib.scale.scale_factory(scale, axis, **kwargs)
[source] -
Return a scale class by name.
ACCEPTS: [ linear | log | logit | symlog ]
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/2.2.3/api/scale_api.html