Functions
Aggregate, select, transform, and predict data with InfluxQL functions.
Content
Aggregations
COUNT()
Returns the number of non-null field values.
Syntax
SELECT COUNT( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Nested Syntax
SELECT COUNT(DISTINCT( [ * | <field_key> | /<regular_expression>/ ] )) [...]
Description of Syntax
COUNT(field_key)
Returns the number of field values associated with the field key.
COUNT(/regular_expression/)
Returns the number of field values associated with each field key that matches the regular expression.
COUNT(*)
Returns the number of field values associated with each field key in the measurement.
COUNT()
supports all field value data types. InfluxQL supports nesting DISTINCT()
with COUNT()
.
Examples
Example 1: Count the field values associated with a field key
> SELECT COUNT("water_level") FROM "h2o_feet" name: h2o_feet time count ---- ----- 1970-01-01T00:00:00Z 15258
The query returns the number of non-null field values in the water_level
field key in the h2o_feet
measurement.
Example 2: Count the field values associated with each field key in a measurement
> SELECT COUNT(*) FROM "h2o_feet" name: h2o_feet time count_level description count_water_level ---- ----------------------- ----------------- 1970-01-01T00:00:00Z 15258 15258
The query returns the number of non-null field values for each field key associated with the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 3: Count the field values associated with each field key that matches a regular expression
> SELECT COUNT(/water/) FROM "h2o_feet" name: h2o_feet time count_water_level ---- ----------------- 1970-01-01T00:00:00Z 15258
The query returns the number of non-null field values for every field key that contains the word water
in the h2o_feet
measurement.
Example 4: Count the field values associated with a field key and include several clauses
> SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(200) LIMIT 7 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time count ---- ----- 2015-08-17T23:48:00Z 200 2015-08-18T00:00:00Z 2 2015-08-18T00:12:00Z 2 2015-08-18T00:24:00Z 2 2015-08-18T00:36:00Z 2 2015-08-18T00:48:00Z 2
The query returns the number of non-null field values in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 200
and limits the number of points and series returned to seven and one.
Example 5: Count the distinct field values associated with a field key
> SELECT COUNT(DISTINCT("level description")) FROM "h2o_feet" name: h2o_feet time count ---- ----- 1970-01-01T00:00:00Z 4
The query returns the number of unique field values for the level description
field key and the h2o_feet
measurement.
Common Issues with COUNT()
Issue 1: COUNT() and fill()
Most InfluxQL functions report null
values for time intervals with no data, and fill(<fill_option>)
replaces that null
value with the fill_option
. COUNT()
reports 0
for time intervals with no data, and fill(<fill_option>)
replaces any 0
values with the fill_option
.
Example
The first query in the codeblock below does not include fill()
. The last time interval has no data so the reported value for that time interval is zero. The second query includes fill(800000)
; it replaces the zero in the last interval with 800000
.
> SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-09-18T21:24:00Z' AND time <= '2015-09-18T21:54:00Z' GROUP BY time(12m) name: h2o_feet time count ---- ----- 2015-09-18T21:24:00Z 2 2015-09-18T21:36:00Z 2 2015-09-18T21:48:00Z 0 > SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-09-18T21:24:00Z' AND time <= '2015-09-18T21:54:00Z' GROUP BY time(12m) fill(800000) name: h2o_feet time count ---- ----- 2015-09-18T21:24:00Z 2 2015-09-18T21:36:00Z 2 2015-09-18T21:48:00Z 800000
DISTINCT()
Returns the list of unique field values.
Syntax
SELECT DISTINCT( [ * | <field_key> | /<regular_expression>/ ] ) FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Nested Syntax
SELECT COUNT(DISTINCT( [ * | <field_key> | /<regular_expression>/ ] )) [...]
Description of Syntax
DISTINCT(field_key)
Returns the unique field values associated with the field key.
DISTINCT(/regular_expression/)
Returns the unique field values associated with each field key that matches the regular expression.
DISTINCT(*)
Returns the unique field values associated with each field key in the measurement.
DISTINCT()
supports all field value data types. InfluxQL supports nesting DISTINCT()
with COUNT()
.
Examples
Example 1: List the distinct field values associated with a field key
> SELECT DISTINCT("level description") FROM "h2o_feet" name: h2o_feet time distinct ---- -------- 1970-01-01T00:00:00Z between 6 and 9 feet 1970-01-01T00:00:00Z below 3 feet 1970-01-01T00:00:00Z between 3 and 6 feet 1970-01-01T00:00:00Z at or greater than 9 feet
The query returns a tabular list of the unique field values in the level description
field key in the h2o_feet
measurement.
Example 2: List the distinct field values associated with each field key in a measurement
> SELECT DISTINCT(*) FROM "h2o_feet" name: h2o_feet time distinct_level description distinct_water_level ---- -------------------------- -------------------- 1970-01-01T00:00:00Z between 6 and 9 feet 8.12 1970-01-01T00:00:00Z between 3 and 6 feet 8.005 1970-01-01T00:00:00Z at or greater than 9 feet 7.887 1970-01-01T00:00:00Z below 3 feet 7.762 [...]
The query returns a tabular list of the unique field values for each field key in the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 3: List the distinct field values associated with each field key that matches a regular expression
> SELECT DISTINCT(/description/) FROM "h2o_feet" name: h2o_feet time distinct_level description ---- -------------------------- 1970-01-01T00:00:00Z below 3 feet 1970-01-01T00:00:00Z between 6 and 9 feet 1970-01-01T00:00:00Z between 3 and 6 feet 1970-01-01T00:00:00Z at or greater than 9 feet
The query returns a tabular list of the unique field values for each field key in the h2o_feet
measurement that contains the word description
.
Example 4: List the distinct field values associated with a field key and include several clauses
> SELECT DISTINCT("level description") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* SLIMIT 1 name: h2o_feet tags: location=coyote_creek time distinct ---- -------- 2015-08-18T00:00:00Z between 6 and 9 feet 2015-08-18T00:12:00Z between 6 and 9 feet 2015-08-18T00:24:00Z between 6 and 9 feet 2015-08-18T00:36:00Z between 6 and 9 feet 2015-08-18T00:48:00Z between 6 and 9 feet
The query returns a tabular list of the unique field values in the level description
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query also limits the number of series returned to one.
Example 5: Count the distinct field values associated with a field key
> SELECT COUNT(DISTINCT("level description")) FROM "h2o_feet" name: h2o_feet time count ---- ----- 1970-01-01T00:00:00Z 4
The query returns the number of unique field values in the level description
field key and the h2o_feet
measurement.
Common Issues with DISTINCT()
Issue 1: DISTINCT() and the INTO clause
Using DISTINCT()
with the INTO
clause can cause InfluxDB to overwrite points in the destination measurement. DISTINCT()
often returns several results with the same timestamp; InfluxDB assumes points with the same series and timestamp are duplicate points and simply overwrites any duplicate point with the most recent point in the destination measurement.
Example
The first query in the codeblock below uses the DISTINCT()
function and returns four results. Notice that each result has the same timestamp. The second query adds an INTO
clause to the initial query and writes the query results to the distincts
measurement. The last query in the codeblock selects all the data in the distincts
measurement.
The last query returns one point because the four initial results are duplicate points; they belong to the same series and have the same timestamp. When the system encounters duplicate points, it simply overwrites the previous point with the most recent point.
> SELECT DISTINCT("level description") FROM "h2o_feet" name: h2o_feet time distinct ---- -------- 1970-01-01T00:00:00Z below 3 feet 1970-01-01T00:00:00Z between 6 and 9 feet 1970-01-01T00:00:00Z between 3 and 6 feet 1970-01-01T00:00:00Z at or greater than 9 feet > SELECT DISTINCT("level description") INTO "distincts" FROM "h2o_feet" name: result time written ---- ------- 1970-01-01T00:00:00Z 4 > SELECT * FROM "distincts" name: distincts time distinct ---- -------- 1970-01-01T00:00:00Z at or greater than 9 feet
INTEGRAL()
Returns the area under the curve for subsequent field values.
Syntax
SELECT INTEGRAL( [ * | <field_key> | /<regular_expression>/ ] [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
InfluxDB calculates the area under the curve for subsequent field values and converts those results into the summed area per unit
. The unit
argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit
, the unit defaults to one second (1s
).
INTEGRAL(field_key)
Returns the area under the curve for subsequent field values assoicated with the field key.
INTEGRAL(/regular_expression/)
Returns the are under the curve for subsequent field values associated with each field key that matches the regular expression.
INTEGRAL(*)
Returns the average field value associated with each field key in the measurement.
INTEGRAL()
does not support fill()
. INTEGRAL()
supports int64 and float64 field value data types.
Examples
Examples 1-5 use the following subsample of the NOAA_water_database
data:
> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time water_level ---- ----------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 2.116 2015-08-18T00:12:00Z 2.028 2015-08-18T00:18:00Z 2.126 2015-08-18T00:24:00Z 2.041 2015-08-18T00:30:00Z 2.051
Example 1: Calculate the integral for the field values associated with a field key
> SELECT INTEGRAL("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time integral ---- -------- 1970-01-01T00:00:00Z 3732.66
The query returns the area under the curve (in seconds) for the field values associated with the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the integral for the field values associated with a field key and specify the unit option
> SELECT INTEGRAL("water_level",1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time integral ---- -------- 1970-01-01T00:00:00Z 62.211
The query returns the area under the curve (in minutes) for the field values associated with the water_level
field key and in the h2o_feet
measurement.
Example 3: Calculate the integral for the field values associated with each field key in a measurement and specify the unit option
> SELECT INTEGRAL(*,1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time integral_water_level ---- -------------------- 1970-01-01T00:00:00Z 62.211
The query returns the area under the curve (in minutes) for the field values associated with each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has on numerical field: water_level
.
Example 4: Calculate the integral for the field values associated with each field key that matches a regular expression and specify the unit option
> SELECT INTEGRAL(/water/,1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time integral_water_level ---- -------------------- 1970-01-01T00:00:00Z 62.211
The query returns the area under the curve (in minutes) for the field values associated with each field key that stores numerical values includes the word water
in the h2o_feet
measurement.
Example 5: Calculate the integral for the field values associated with a field key and include several clauses
> SELECT INTEGRAL("water_level",1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) LIMIT 1 name: h2o_feet time integral ---- -------- 2015-08-18T00:00:00Z 24.972
The query returns the area under the curve (in minutes) for the field values associated with the water_level
field key and in the h2o_feet
measurement. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:30:00Z
, groups results into 12-minute intervals, and limits the number of results returned to one.
MEAN()
Returns the arithmetic mean (average) of field values.
Syntax
SELECT MEAN( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
MEAN(field_key)
Returns the average field value associated with the field key.
MEAN(/regular_expression/)
Returns the average field value associated with each field key that matches the regular expression.
MEAN(*)
Returns the average field value associated with each field key in the measurement.
MEAN()
supports int64 and float64 field value data types.
Examples
Example 1: Calculate the mean field value associated with a field key
> SELECT MEAN("water_level") FROM "h2o_feet" name: h2o_feet time mean ---- ---- 1970-01-01T00:00:00Z 4.442107025822522
The query returns the average field value in the water_level
field key in the h2o_feet
measurement.
Example 2: Calculate the mean field value associated with each field key in a measurement
> SELECT MEAN(*) FROM "h2o_feet" name: h2o_feet time mean_water_level ---- ---------------- 1970-01-01T00:00:00Z 4.442107025822522
The query returns the average field value for every field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the mean field value associated with each field key that matches a regular expression
> SELECT MEAN(/water/) FROM "h2o_feet" name: h2o_feet time mean_water_level ---- ---------------- 1970-01-01T00:00:00Z 4.442107025822523
The query returns the average field value for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the mean field value associated with a field key and include several clauses
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(9.01) LIMIT 7 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time mean ---- ---- 2015-08-17T23:48:00Z 9.01 2015-08-18T00:00:00Z 8.0625 2015-08-18T00:12:00Z 7.8245 2015-08-18T00:24:00Z 7.5675 2015-08-18T00:36:00Z 7.303 2015-08-18T00:48:00Z 7.046
The query returns the average of the values in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 9.01
and limits the number of points and series returned to seven and one.
MEDIAN()
Returns the middle value from a sorted list of field values.
Syntax
SELECT MEDIAN( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
MEDIAN(field_key)
Returns the middle field value associated with the field key.
MEDIAN(/regular_expression/)
Returns the middle field value associated with each field key that matches the regular expression.
MEDIAN(*)
Returns the middle field value associated with each field key in the measurement.
MEDIAN()
supports int64 and float64 field value data types.
Note:
MEDIAN()
is nearly equivalent toPERCENTILE(field_key, 50)
, exceptMEDIAN()
returns the average of the two middle field values if the field contains an even number of values.
Examples
Example 1: Calculate the median field value associated with a field key
> SELECT MEDIAN("water_level") FROM "h2o_feet" name: h2o_feet time median ---- ------ 1970-01-01T00:00:00Z 4.124
The query returns the middle field value in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the median field value associated with each field key in a measurement
> SELECT MEDIAN(*) FROM "h2o_feet" name: h2o_feet time median_water_level ---- ------------------ 1970-01-01T00:00:00Z 4.124
The query returns the middle field value for every field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the median field value associated with each field key that matches a regular expression
> SELECT MEDIAN(/water/) FROM "h2o_feet" name: h2o_feet time median_water_level ---- ------------------ 1970-01-01T00:00:00Z 4.124
The query returns the middle field value for every field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the median field value associated with a field key and include several clauses
> SELECT MEDIAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(700) LIMIT 7 SLIMIT 1 SOFFSET 1 name: h2o_feet tags: location=santa_monica time median ---- ------ 2015-08-17T23:48:00Z 700 2015-08-18T00:00:00Z 2.09 2015-08-18T00:12:00Z 2.077 2015-08-18T00:24:00Z 2.0460000000000003 2015-08-18T00:36:00Z 2.0620000000000003 2015-08-18T00:48:00Z 700
The query returns the middle field value in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 700
, limits the number of points and series returned to seven and one, and offsets the series returned by one.
MODE()
Returns the most frequent value in a list of field values.
Syntax
SELECT MODE( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
MODE(field_key)
Returns the most frequent field value associated with the field key.
MODE(/regular_expression/)
Returns the most frequent field value associated with each field key that matches the regular expression.
MODE(*)
Returns the most frequent field value associated with each field key in the measurement.
MODE()
supports all field value data types.
Note:
MODE()
returns the field value with the earliest timestamp if there’s a tie between two or more values for the maximum number of occurrences.
Examples
Example 1: Calculate the mode field value associated with a field key
> SELECT MODE("level description") FROM "h2o_feet" name: h2o_feet time mode ---- ---- 1970-01-01T00:00:00Z between 3 and 6 feet
The query returns the most frequent field value in the level description
field key and in the h2o_feet
measurement.
Example 2: Calculate the mode field value associated with each field key in a measurement
> SELECT MODE(*) FROM "h2o_feet" name: h2o_feet time mode_level description mode_water_level ---- ---------------------- ---------------- 1970-01-01T00:00:00Z between 3 and 6 feet 2.69
The query returns the most frequent field value for every field key in the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 3: Calculate the mode field value associated with each field key that matches a regular expression
> SELECT MODE(/water/) FROM "h2o_feet" name: h2o_feet time mode_water_level ---- ---------------- 1970-01-01T00:00:00Z 2.69
The query returns the most frequent field value for every field key that includes the word /water/
in the h2o_feet
measurement.
Example 4: Calculate the mode field value associated with a field key and include several clauses
> SELECT MODE("level description") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* LIMIT 3 SLIMIT 1 SOFFSET 1 name: h2o_feet tags: location=santa_monica time mode ---- ---- 2015-08-17T23:48:00Z 2015-08-18T00:00:00Z below 3 feet 2015-08-18T00:12:00Z below 3 feet
The query returns the mode of the values associated with the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query limits the number of points and series returned to three and one, and it offsets the series returned by one.
SPREAD()
Returns the difference between the minimum and maximum field values.
Syntax
SELECT SPREAD( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
SPREAD(field_key)
Returns the difference between the minimum and maximum field values associated with the field key.
SPREAD(/regular_expression/)
Returns the difference between the minimum and maximum field values associated with each field key that matches the regular expression.
SPREAD(*)
Returns the difference between the minimum and maximum field values associated with each field key in the measurement.
SPREAD()
supports int64 and float64 field value data types.
Examples
Example 1: Calculate the spread for the field values associated with a field key
> SELECT SPREAD("water_level") FROM "h2o_feet" name: h2o_feet time spread ---- ------ 1970-01-01T00:00:00Z 10.574
The query returns the difference between the minimum and maximum field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the spread for the field values associated with each field key in a measurement
> SELECT SPREAD(*) FROM "h2o_feet" name: h2o_feet time spread_water_level ---- ------------------ 1970-01-01T00:00:00Z 10.574
The query returns the difference between the minimum and maximum field values for every field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the spread for the field values associated with each field key that matches a regular expression
> SELECT SPREAD(/water/) FROM "h2o_feet" name: h2o_feet time spread_water_level ---- ------------------ 1970-01-01T00:00:00Z 10.574
The query returns the difference between the minimum and maximum field values for every field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the spread for the field values associated with a field key and include several clauses
> SELECT SPREAD("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(18) LIMIT 3 SLIMIT 1 SOFFSET 1 name: h2o_feet tags: location=santa_monica time spread ---- ------ 2015-08-17T23:48:00Z 18 2015-08-18T00:00:00Z 0.052000000000000046 2015-08-18T00:12:00Z 0.09799999999999986
The query returns the difference between the minimum and maximum field values in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 18
, limits the number of points and series returned to three and one, and offsets the series returned by one.
STDDEV()
Returns the standard deviation of field values.
Syntax
SELECT STDDEV( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
STDDEV(field_key)
Returns the standard deviation of field values associated with the field key.
STDDEV(/regular_expression/)
Returns the standard deviation of field values associated with each field key that matches the regular expression.
STDDEV(*)
Returns the standard deviation of field values associated with each field key in the measurement.
STDDEV()
supports int64 and float64 field value data types.
Examples
Example 1: Calculate the standard deviation for the field values associated with a field key
> SELECT STDDEV("water_level") FROM "h2o_feet" name: h2o_feet time stddev ---- ------ 1970-01-01T00:00:00Z 2.279144584196141
The query returns the standard deviation of the field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the standard deviation for the field values associated with each field key in a measurement
> SELECT STDDEV(*) FROM "h2o_feet" name: h2o_feet time stddev_water_level ---- ------------------ 1970-01-01T00:00:00Z 2.279144584196141
The query returns the standard deviation of the field values for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the standard deviation for the field values associated with each field key that matches a regular expression
> SELECT STDDEV(/water/) FROM "h2o_feet" name: h2o_feet time stddev_water_level ---- ------------------ 1970-01-01T00:00:00Z 2.279144584196141
The query returns the standard deviation of the field values for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the standard deviation for the field values associated with a field key and include several clauses
> SELECT STDDEV("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(18000) LIMIT 2 SLIMIT 1 SOFFSET 1 name: h2o_feet tags: location=santa_monica time stddev ---- ------ 2015-08-17T23:48:00Z 18000 2015-08-18T00:00:00Z 0.03676955262170051
The query returns the standard deviation of the field values in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 18000
, limits the number of points and series returned to two and one, and offsets the series returned by one.
SUM()
Returns the sum of field values.
Syntax
SELECT SUM( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
SUM(field_key)
Returns the sum of field values associated with the field key.
SUM(/regular_expression/)
Returns the sum of field values associated with each field key that matches the regular expression.
SUM(*)
Returns the sums of field values associated with each field key in the measurement.
SUM()
supports int64 and float64 field value data types.
Examples:
Example 1: Calculate the sum of the field values associated with a field key
> SELECT SUM("water_level") FROM "h2o_feet" name: h2o_feet time sum ---- --- 1970-01-01T00:00:00Z 67777.66900000004
The query returns the summed total of the field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the sum of the field values associated with each field key in a measurement
> SELECT SUM(*) FROM "h2o_feet" name: h2o_feet time sum_water_level ---- --------------- 1970-01-01T00:00:00Z 67777.66900000004
The query returns the summed total of the field values for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the sum of the field values associated with each field key that matches a regular expression
> SELECT SUM(/water/) FROM "h2o_feet" name: h2o_feet time sum_water_level ---- --------------- 1970-01-01T00:00:00Z 67777.66900000004
The query returns the summed total of the field values for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the sum of the field values associated with a field key and include several clauses
> SELECT SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(18000) LIMIT 4 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time sum ---- --- 2015-08-17T23:48:00Z 18000 2015-08-18T00:00:00Z 16.125 2015-08-18T00:12:00Z 15.649 2015-08-18T00:24:00Z 15.135
The query returns the summed total of the field values in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 18000, and it limits the number of points and series returned to four and one.
Selectors
BOTTOM()
Returns the smallest N
field values.
Syntax
SELECT BOTTOM(<field_key>[,<tag_key(s)>],<N> )[,<tag_key(s)>|<field_key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
BOTTOM(field_key,N)
Returns the smallest N field values associated with the field key.
BOTTOM(field_key,tag_key(s),N)
Returns the smallest field value for N tag values of the tag key.
BOTTOM(field_key,N),tag_key(s),field_key(s)
Returns the smallest N field values associated with the field key in the parentheses and the relevant tag and/or field.
BOTTOM()
supports int64 and float64 field value data types.
Notes:
BOTTOM()
returns the field value with the earliest timestamp if there’s a tie between two or more values for the smallest value.BOTTOM()
differs from other InfluxQL functions when combined with anINTO
clause. See the Common Issues section for more information.
Examples
Example 1: Select the bottom three field values associated with a field key
> SELECT BOTTOM("water_level",3) FROM "h2o_feet" name: h2o_feet time bottom ---- ------ 2015-08-29T14:30:00Z -0.61 2015-08-29T14:36:00Z -0.591 2015-08-30T15:18:00Z -0.594
The query returns the smallest three field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Select the bottom field value associated with a field key for two tags
> SELECT BOTTOM("water_level","location",2) FROM "h2o_feet" name: h2o_feet time bottom location ---- ------ -------- 2015-08-29T10:36:00Z -0.243 santa_monica 2015-08-29T14:30:00Z -0.61 coyote_creek
The query returns the smallest field values in the water_level
field key for two tag values associated with the location
tag key.
Example 3: Select the bottom four field values associated with a field key and the relevant tags and fields
> SELECT BOTTOM("water_level",4),"location","level description" FROM "h2o_feet" name: h2o_feet time bottom location level description ---- ------ -------- ----------------- 2015-08-29T14:24:00Z -0.587 coyote_creek below 3 feet 2015-08-29T14:30:00Z -0.61 coyote_creek below 3 feet 2015-08-29T14:36:00Z -0.591 coyote_creek below 3 feet 2015-08-30T15:18:00Z -0.594 coyote_creek below 3 feet
The query returns the smallest four field values in the water_level
field key and the relevant values of the location
tag key and the level description
field key.
Example 4: Select the bottom three field values associated with a field key and include several clauses
> SELECT BOTTOM("water_level",3),"location" FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(24m) ORDER BY time DESC name: h2o_feet time bottom location ---- ------ -------- 2015-08-18T00:48:00Z 1.991 santa_monica 2015-08-18T00:54:00Z 2.054 santa_monica 2015-08-18T00:54:00Z 6.982 coyote_creek 2015-08-18T00:24:00Z 2.041 santa_monica 2015-08-18T00:30:00Z 2.051 santa_monica 2015-08-18T00:42:00Z 2.057 santa_monica 2015-08-18T00:00:00Z 2.064 santa_monica 2015-08-18T00:06:00Z 2.116 santa_monica 2015-08-18T00:12:00Z 2.028 santa_monica
The query returns the smallest three values in the water_level
field key for each 24-minute interval between 2015-08-18T00:00:00Z
and 2015-08-18T00:54:00Z
. It also returns results in descending timestamp order.
Notice that the GROUP BY time() clause does not override the points’ original timestamps. See Issue 1 in the section below for a more detailed explanation of that behavior.
Common Issues with BOTTOM()
Issue 1: BOTTOM()
with a GROUP BY time()
clause
Queries with BOTTOM()
and a GROUP BY time()
clause return the specified number of points per GROUP BY time()
interval. For most GROUP BY time()
queries, the returned timestamps mark the start of the GROUP BY time()
interval. GROUP BY time()
queries with the BOTTOM()
function behave differently; they maintain the timestamp of the original data point.
Example
The query below returns two points per 18-minute GROUP BY time()
interval. Notice that the returned timestamps are the points’ original timestamps; they are not forced to match the start of the GROUP BY time()
intervals.
> SELECT BOTTOM("water_level",2) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(18m) name: h2o_feet time bottom ---- ------ __ 2015-08-18T00:00:00Z 2.064 | 2015-08-18T00:12:00Z 2.028 | <------- Smallest points for the first time interval -- __ 2015-08-18T00:24:00Z 2.041 | 2015-08-18T00:30:00Z 2.051 | <------- Smallest points for the second time interval --
Issue 2: BOTTOM() and a tag key with fewer than N tag values
Queries with the syntax SELECT BOTTOM(<field_key>,<tag_key>,<N>)
can return fewer points than expected. If the tag key has X
tag values, the query specifies N
values, and X
is smaller than N
, then the query returns X
points.
Example
The query below asks for the smallest field values of water_level
for three tag values of the location
tag key. Because the location
tag key has two tag values (santa_monica
and coyote_creek
), the query returns two points instead of three.
> SELECT BOTTOM("water_level","location",3) FROM "h2o_feet" name: h2o_feet time bottom location ---- ------ -------- 2015-08-29T10:36:00Z -0.243 santa_monica 2015-08-29T14:30:00Z -0.61 coyote_creek
Issue 3: BOTTOM(), tags, and the INTO clause
When combined with an INTO
clause and no GROUP BY tag
clause, most InfluxQL functions convert any tags in the initial data to fields in the newly written data. This behavior also applies to the BOTTOM()
function unless BOTTOM()
includes a tag key as an argument: BOTTOM(field_key,tag_key(s),N)
. In those cases, the system preserves the specified tag as a tag in the newly written data.
Example
The first query in the codeblock below returns the smallest field values in the water_level
field key for two tag values associated with the location
tag key. It also writes those results to the bottom_water_levels
measurement.
The second query shows that InfluxDB preserved the location
tag as a tag in the bottom_water_levels
measurement.
> SELECT BOTTOM("water_level","location",2) INTO "bottom_water_levels" FROM "h2o_feet" name: result time written ---- ------- 1970-01-01T00:00:00Z 2 > SHOW TAG KEYS FROM "bottom_water_levels" name: bottom_water_levels tagKey ------ location
FIRST()
Returns the field value with the oldest timestamp.
Syntax
SELECT FIRST(<field_key>)[,<tag_key(s)>|<field_key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
FIRST(field_key)
Returns the oldest field value (determined by timestamp) associated with the field key.
FIRST(/regular_expression/)
Returns the oldest field value (determined by timestamp) associated with each field key that matches the regular expression.
FIRST(*)
Returns the oldest field value (determined by timestamp) associated with each field key in the measurement.
FIRST(field_key),tag_key(s),field_key(s)
Returns the oldest field value (determined by timestamp) associated with the field key in the parentheses and the relevant tag and/or field.
FIRST()
supports all field value data types.
Examples
Example 1: Select the first field value associated with a field key
> SELECT FIRST("level description") FROM "h2o_feet" name: h2o_feet time first ---- ----- 2015-08-18T00:00:00Z between 6 and 9 feet
The query returns the oldest field value (determined by timestamp) associated with the level description
field key and in the h2o_feet
measurement.
Example 2: Select the first field value associated with each field key in a measurement
> SELECT FIRST(*) FROM "h2o_feet" name: h2o_feet time first_level description first_water_level ---- ----------------------- ----------------- 1970-01-01T00:00:00Z between 6 and 9 feet 8.12
The query returns the oldest field value (determined by timestamp) for each field key in the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 3: Select the first field value associated with each field key that matches a regular expression
> SELECT FIRST(/level/) FROM "h2o_feet" name: h2o_feet time first_level description first_water_level ---- ----------------------- ----------------- 1970-01-01T00:00:00Z between 6 and 9 feet 8.12
The query returns the oldest field value for each field key that includes the word level
in the h2o_feet
measurement.
Example 4: Select the first value associated with a field key and the relevant tags and fields
> SELECT FIRST("level description"),"location","water_level" FROM "h2o_feet" name: h2o_feet time first location water_level ---- ----- -------- ----------- 2015-08-18T00:00:00Z between 6 and 9 feet coyote_creek 8.12
The query returns the oldest field value (determined by timestamp) in the level description
field key and the relevant values of the location
tag key and the water_level
field key.
Example 5: Select the first field value associated with a field key and include several clauses
> SELECT FIRST("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(9.01) LIMIT 4 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time first ---- ----- 2015-08-17T23:48:00Z 9.01 2015-08-18T00:00:00Z 8.12 2015-08-18T00:12:00Z 7.887 2015-08-18T00:24:00Z 7.635
The query returns the oldest field value (determined by timestamp) in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 9.01
, and it limits the number of points and series returned to four and one.
Notice that the GROUP BY time()
clause overrides the points’ original timestamps. The timestamps in the results indicate the the start of each 12-minute time interval; the first point in the results covers the time interval between 2015-08-17T23:48:00Z
and just before 2015-08-18T00:00:00Z
and the last point in the results covers the time interval between 2015-08-18T00:24:00Z
and just before 2015-08-18T00:36:00Z
.
LAST()
Returns the field value with the most recent timestamp.
Syntax
SELECT LAST(<field_key>)[,<tag_key(s)>|<field_keys(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
LAST(field_key)
Returns the newest field value (determined by timestamp) associated with the field key.
LAST(/regular_expression/)
Returns the newest field value (determined by timestamp) associated with each field key that matches the regular expression.
LAST(*)
Returns the newest field value (determined by timestamp) associated with each field key in the measurement.
LAST(field_key),tag_key(s),field_key(s)
Returns the newest field value (determined by timestamp) associated with the field key in the parentheses and the relevant tag and/or field.
LAST()
supports all field value data types.
Examples
Example 1: Select the last field values associated with a field key
> SELECT LAST("level description") FROM "h2o_feet" name: h2o_feet time last ---- ---- 2015-09-18T21:42:00Z between 3 and 6 feet
The query returns the newest field value (determined by timestamp) associated with the level description
field key and in the h2o_feet
measurement.
Example 2: Select the last field values associated with each field key in a measurement
> SELECT LAST(*) FROM "h2o_feet" name: h2o_feet time first_level description first_water_level ---- ----------------------- ----------------- 1970-01-01T00:00:00Z between 3 and 6 feet 4.938
The query returns the newest field value (determined by timestamp) for each field key in the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 3: Select the last field value associated with each field key that matches a regular expression
> SELECT LAST(/level/) FROM "h2o_feet" name: h2o_feet time first_level description first_water_level ---- ----------------------- ----------------- 1970-01-01T00:00:00Z between 3 and 6 feet 4.938
The query returns the newest field value for each field key that includes the word level
in the h2o_feet
measurement.
Example 4: Select the last field value associated with a field key and the relevant tags and fields
> SELECT LAST("level description"),"location","water_level" FROM "h2o_feet" name: h2o_feet time last location water_level ---- ---- -------- ----------- 2015-09-18T21:42:00Z between 3 and 6 feet santa_monica 4.938
The query returns the newest field value (determined by timestamp) in the level description
field key and the relevant values of the location
tag key and the water_level
field key.
Example 5: Select the last field value associated with a field key and include several clauses
> SELECT LAST("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(9.01) LIMIT 4 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time last ---- ---- 2015-08-17T23:48:00Z 9.01 2015-08-18T00:00:00Z 8.005 2015-08-18T00:12:00Z 7.762 2015-08-18T00:24:00Z 7.5
The query returns the newest field value (determined by timestamp) in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 12-minute time intervals and per tag. The query fills empty time intervals with 9.01
, and it limits the number of points and series returned to four and one.
Notice that the GROUP BY time()
clause overrides the points’ original timestamps. The timestamps in the results indicate the the start of each 12-minute time interval; the first point in the results covers the time interval between 2015-08-17T23:48:00Z
and just before 2015-08-18T00:00:00Z
and the last point in the results covers the time interval between 2015-08-18T00:24:00Z
and just before 2015-08-18T00:36:00Z
.
MAX()
Returns the greatest field value.
Syntax
SELECT MAX(<field_key>)[,<tag_key(s)>|<field__key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
MAX(field_key)
Returns the greatest field value associated with the field key.
MAX(/regular_expression/)
Returns the greatest field value associated with each field key that matches the regular expression.
MAX(*)
Returns the greatest field value associated with each field key in the measurement.
MAX(field_key),tag_key(s),field_key(s)
Returns the greatest field value associated with the field key in the parentheses and the relevant tag and/or field.
MAX()
supports int64 and float64 field value data types.
Examples
Example 1: Select the maximum field value associated with a field key
> SELECT MAX("water_level") FROM "h2o_feet" name: h2o_feet time max ---- --- 2015-08-29T07:24:00Z 9.964
The query returns the greatest field value in the water_level
field key and in the h2o_feet
measurement.
Example 2: Select the maximum field value associated with each field key in a measurement
> SELECT MAX(*) FROM "h2o_feet" name: h2o_feet time max_water_level ---- --------------- 2015-08-29T07:24:00Z 9.964
The query returns the greatest field value for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Select the maximum field value associated with each field key that matches a regular expression
> SELECT MAX(/level/) FROM "h2o_feet" name: h2o_feet time max_water_level ---- --------------- 2015-08-29T07:24:00Z 9.964
The query returns the greatest field value for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Select the maximum field value associated with a field key and the relevant tags and fields
> SELECT MAX("water_level"),"location","level description" FROM "h2o_feet" name: h2o_feet time max location level description ---- --- -------- ----------------- 2015-08-29T07:24:00Z 9.964 coyote_creek at or greater than 9 feet
The query returns the greatest field value in the water_level
field key and the relevant values of the location
tag key and the level description
field key.
Example 5: Select the maximum field value associated with a field key and include several clauses
> SELECT MAX("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(9.01) LIMIT 4 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time max ---- --- 2015-08-17T23:48:00Z 9.01 2015-08-18T00:00:00Z 8.12 2015-08-18T00:12:00Z 7.887 2015-08-18T00:24:00Z 7.635
The query returns the greatest field value in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results in to 12-minute time intervals and per tag. The query fills empty time intervals with 9.01
, and it limits the number of points and series returned to four and one.
Notice that the GROUP BY time()
clause overrides the points’ original timestamps. The timestamps in the results indicate the the start of each 12-minute time interval; the first point in the results covers the time interval between 2015-08-17T23:48:00Z
and just before 2015-08-18T00:00:00Z
and the last point in the results covers the time interval between 2015-08-18T00:24:00Z
and just before 2015-08-18T00:36:00Z
.
MIN()
Returns the lowest field value.
Syntax
SELECT MIN(<field_key>)[,<tag_key(s)>|<field_key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
MIN(field_key)
Returns the lowest field value associated with the field key.
MIN(/regular_expression/)
Returns the lowest field value associated with each field key that matches the regular expression.
MIN(*)
Returns the lowest field value associated with each field key in the measurement.
MIN(field_key),tag_key(s),field_key(s)
Returns the lowest field value associated with the field key in the parentheses and the relevant tag and/or field.
MIN()
supports int64 and float64 field value data types.
Examples
Example 1: Select the minimum field value associated with a field key
> SELECT MIN("water_level") FROM "h2o_feet" name: h2o_feet time min ---- --- 2015-08-29T14:30:00Z -0.61
The query returns the lowest field value in the water_level
field key and in the h2o_feet
measurement.
Example 2: Select the minimum field value associated with each field key in a measurement
> SELECT MIN(*) FROM "h2o_feet" name: h2o_feet time min_water_level ---- --------------- 2015-08-29T14:30:00Z -0.61
The query returns the lowest field value for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Select the minimum field value associated with each field key that matches a regular expression
> SELECT MIN(/level/) FROM "h2o_feet" name: h2o_feet time min_water_level ---- --------------- 2015-08-29T14:30:00Z -0.61
The query returns the lowest field value for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Select the minimum field value associated with a field key and the relevant tags and fields
> SELECT MIN("water_level"),"location","level description" FROM "h2o_feet" name: h2o_feet time min location level description ---- --- -------- ----------------- 2015-08-29T14:30:00Z -0.61 coyote_creek below 3 feet
The query returns the lowest field value in the water_level
field key and the relevant values of the location
tag key and the level description
field key.
Example 5: Select the minimum field value associated with a field key and include several clauses
> SELECT MIN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m),* fill(9.01) LIMIT 4 SLIMIT 1 name: h2o_feet tags: location=coyote_creek time min ---- --- 2015-08-17T23:48:00Z 9.01 2015-08-18T00:00:00Z 8.005 2015-08-18T00:12:00Z 7.762 2015-08-18T00:24:00Z 7.5
The query returns the lowest field value in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results in to 12-minute time intervals and per tag. The query fills empty time intervals with 9.01
, and it limits the number of points and series returned to four and one.
Notice that the GROUP BY time()
clause overrides the points’ original timestamps. The timestamps in the results indicate the the start of each 12-minute time interval; the first point in the results covers the time interval between 2015-08-17T23:48:00Z
and just before 2015-08-18T00:00:00Z
and the last point in the results covers the time interval between 2015-08-18T00:24:00Z
and just before 2015-08-18T00:36:00Z
.
PERCENTILE()
Returns the N
th percentile field value.
Syntax
SELECT PERCENTILE(<field_key>, <N>)[,<tag_key(s)>|<field_key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
PERCENTILE(field_key,N)
Returns the Nth percentile field value associated with the field key.
PERCENTILE(/regular_expression/,N)
Returns the Nth percentile field value associated with each field key that matches the regular expression.
PERCENTILE(*,N)
Returns the Nth percentile field value associated with each field key in the measurement.
PERCENTILE(field_key,N),tag_key(s),field_key(s)
Returns the Nth percentile field value associated with the field key in the parentheses and the relevant tag and/or field.
N
must be an integer or floating point number between 0
and 100
, inclusive. PERCENTILE()
supports int64 and float64 field value data types.
Examples
Example 1: Select the fifth percentile field value associated with a field key
> SELECT PERCENTILE("water_level",5) FROM "h2o_feet" name: h2o_feet time percentile ---- ---------- 2015-08-31T03:42:00Z 1.122
The query returns the field value that is larger than five percent of the field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Select the fifth percentile field value associated with each field key in a measurement
> SELECT PERCENTILE(*,5) FROM "h2o_feet" name: h2o_feet time percentile_water_level ---- ---------------------- 2015-08-31T03:42:00Z 1.122
The query returns the field value that is larger than five percent of the field values in each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Select fifth percentile field value associated with each field key that matches a regular expression
> SELECT PERCENTILE(/level/,5) FROM "h2o_feet" name: h2o_feet time percentile_water_level ---- ---------------------- 2015-08-31T03:42:00Z 1.122
The query returns the field value that is larger than five percent of the field values in each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Select the fifth percentile field values associated with a field key and the relevant tags and fields
> SELECT PERCENTILE("water_level",5),"location","level description" FROM "h2o_feet" name: h2o_feet time percentile location level description ---- ---------- -------- ----------------- 2015-08-31T03:42:00Z 1.122 coyote_creek below 3 feet
The query returns the field value that is larger than five percent of the field values in the water_level
field key and the relevant values of the location
tag key and the level description
field key.
Example 5: Select the twentieth percentile field value associated with a field key and include several clauses
> SELECT PERCENTILE("water_level",20) FROM "h2o_feet" WHERE time >= '2015-08-17T23:48:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(24m) fill(15) LIMIT 2 name: h2o_feet time percentile ---- ---------- 2015-08-17T23:36:00Z 15 2015-08-18T00:00:00Z 2.064
The query returns the field value that is larger than 20 percent of the values in the water_level
field key. It covers the time range between 2015-08-17T23:48:00Z
and 2015-08-18T00:54:00Z
and groups results into 24-minute intervals. It fills empty time intervals with 15
and it limits the number of points returned to two.
Notice that the GROUP BY time()
clause overrides the points’ original timestamps. The timestamps in the results indicate the the start of each 24-minute time interval; the first point in the results covers the time interval between 2015-08-17T23:36:00Z
and just before 2015-08-18T00:00:00Z
and the last point in the results covers the time interval between 2015-08-18T00:00:00Z
and just before 2015-08-18T00:24:00Z
.
Common Issues with PERCENTILE()
Issue 1: PERCENTILE() vs. other InfluxQL functions
-
PERCENTILE(<field_key>,100)
is equivalent toMAX(<field_key>)
. -
PERCENTILE(<field_key>, 50)
is nearly equivalent toMEDIAN(<field_key>)
, except theMEDIAN()
function returns the average of the two middle values if the field key contains an even number of field values. -
PERCENTILE(<field_key>,0)
is not equivalent toMIN(<field_key>)
. This is a known issue.
SAMPLE()
Returns a random sample of N
field values. SAMPLE()
uses reservoir sampling to generate the random points.
Syntax
SELECT SAMPLE(<field_key>, <N>)[,<tag_key(s)>|<field_key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
SAMPLE(field_key,N)
Returns N randomly selected field values associated with the field key.
SAMPLE(/regular_expression/,N)
Returns N randomly selected field values associated with each field key that matches the regular expression.
SAMPLE(*,N)
Returns N randomly selected field values associated with each field key in the measurement.
SAMPLE(field_key,N),tag_key(s),field_key(s)
Returns N randomly selected field values associated with the field key in the parentheses and the relevant tag and/or field.
N
must be an integer. SAMPLE()
supports all field value data types.
Examples
Example 1: Select a sample of the field values associated with a field key
> SELECT SAMPLE("water_level",2) FROM "h2o_feet" name: h2o_feet time sample ---- ------ 2015-09-09T21:48:00Z 5.659 2015-09-18T10:00:00Z 6.939
The query returns two randomly selected points from the water_level
field key and in the h2o_feet
measurement.
Example 2: Select a sample of the field values associated with each field key in a measurement
> SELECT SAMPLE(*,2) FROM "h2o_feet" name: h2o_feet time sample_level description sample_water_level ---- ------------------------ ------------------ 2015-08-25T17:06:00Z 3.284 2015-09-03T04:30:00Z below 3 feet 2015-09-03T20:06:00Z between 3 and 6 feet 2015-09-08T21:54:00Z 3.412
The query returns two randomly selected points for each field key in the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 3: Select a sample of the field values associated with each field key that matches a regular expression
> SELECT SAMPLE(/level/,2) FROM "h2o_feet" name: h2o_feet time sample_level description sample_water_level ---- ------------------------ ------------------ 2015-08-30T05:54:00Z between 6 and 9 feet 2015-09-07T01:18:00Z 7.854 2015-09-09T20:30:00Z 7.32 2015-09-13T19:18:00Z between 3 and 6 feet
The query returns two randomly selected points for each field key that includes the word level
in the h2o_feet
measurement.
Example 4: Select a sample of the field values associated with a field key and the relevant tags and fields
> SELECT SAMPLE("water_level",2),"location","level description" FROM "h2o_feet" name: h2o_feet time sample location level description ---- ------ -------- ----------------- 2015-08-29T10:54:00Z 5.689 coyote_creek between 3 and 6 feet 2015-09-08T15:48:00Z 6.391 coyote_creek between 6 and 9 feet
The query returns two randomly selected points from the water_level
field key and the relevant values of the location
tag and the level description
field.
Example 5: Select a sample of the field values associated with a field key and include several clauses
> SELECT SAMPLE("water_level",1) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(18m) name: h2o_feet time sample ---- ------ 2015-08-18T00:12:00Z 2.028 2015-08-18T00:30:00Z 2.051
The query returns one randomly selected point from the water_level
field key. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:30:00Z
and groups results into 18-minute intervals.
Notice that the GROUP BY time()
clause does not override the points’ original timestamps. See Issue 1 in the section below for a more detailed explanation of that behavior.
Common Issues with SAMPLE()
Issue 1: SAMPLE()
with a GROUP BY time()
clause
Queries with SAMPLE()
and a GROUP BY time()
clause return the specified number of points (N
) per GROUP BY time()
interval. For most GROUP BY time()
queries, the returned timestamps mark the start of the GROUP BY time()
interval. GROUP BY time()
queries with the SAMPLE()
function behave differently; they maintain the timestamp of the original data point.
Example
The query below returns two randomly selected points per 18-minute GROUP BY time()
interval. Notice that the returned timestamps are the points’ original timestamps; they are not forced to match the start of the GROUP BY time()
intervals.
> SELECT SAMPLE("water_level",2) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(18m) name: h2o_feet time sample ---- ------ __ 2015-08-18T00:06:00Z 2.116 | 2015-08-18T00:12:00Z 2.028 | <------- Randomly-selected points for the first time interval -- __ 2015-08-18T00:18:00Z 2.126 | 2015-08-18T00:30:00Z 2.051 | <------- Randomly-selected points for the second time interval --
TOP()
Returns the greatest N
field values.
Syntax
SELECT TOP( <field_key>[,<tag_key(s)>],<N> )[,<tag_key(s)>|<field_key(s)>] [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
TOP(field_key,N)
Returns the greatest N field values associated with the field key.
TOP(field_key,tag_key(s),N)
Returns the greatest field value for N tag values of the tag key.
TOP(field_key,N),tag_key(s),field_key(s)
Returns the greatest N field values associated with the field key in the parentheses and the relevant tag and/or field.
TOP()
supports int64 and float64 field value data types.
Notes:
TOP()
returns the field value with the earliest timestamp if there’s a tie between two or more values for the greatest value.TOP()
differs from other InfluxQL functions when combined with anINTO
clause. See the Common Issues section for more information.
Examples
Example 1: Select the top three field values associated with a field key
> SELECT TOP("water_level",3) FROM "h2o_feet" name: h2o_feet time top ---- --- 2015-08-29T07:18:00Z 9.957 2015-08-29T07:24:00Z 9.964 2015-08-29T07:30:00Z 9.954
The query returns the greatest three field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Select the top field value associated with a field key for two tags
> SELECT TOP("water_level","location",2) FROM "h2o_feet" name: h2o_feet time top location ---- --- -------- 2015-08-29T03:54:00Z 7.205 santa_monica 2015-08-29T07:24:00Z 9.964 coyote_creek
The query returns the greatest field values in the water_level
field key for two tag values associated with the location
tag key.
Example 3: Select the top four field values associated with a field key and the relevant tags and fields
> SELECT TOP("water_level",4),"location","level description" FROM "h2o_feet" name: h2o_feet time top location level description ---- --- -------- ----------------- 2015-08-29T07:18:00Z 9.957 coyote_creek at or greater than 9 feet 2015-08-29T07:24:00Z 9.964 coyote_creek at or greater than 9 feet 2015-08-29T07:30:00Z 9.954 coyote_creek at or greater than 9 feet 2015-08-29T07:36:00Z 9.941 coyote_creek at or greater than 9 feet
The query returns the greatest four field values in the water_level
field key and the relevant values of the location
tag key and the level description
field key.
Example 4: Select the top three field values associated with a field key and include several clauses
> SELECT TOP("water_level",3),"location" FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(24m) ORDER BY time DESC name: h2o_feet time top location ---- --- -------- 2015-08-18T00:48:00Z 7.11 coyote_creek 2015-08-18T00:54:00Z 6.982 coyote_creek 2015-08-18T00:54:00Z 2.054 santa_monica 2015-08-18T00:24:00Z 7.635 coyote_creek 2015-08-18T00:30:00Z 7.5 coyote_creek 2015-08-18T00:36:00Z 7.372 coyote_creek 2015-08-18T00:00:00Z 8.12 coyote_creek 2015-08-18T00:06:00Z 8.005 coyote_creek 2015-08-18T00:12:00Z 7.887 coyote_creek
The query returns the greatest three values in the water_level
field key for each 24-minute interval between 2015-08-18T00:00:00Z
and 2015-08-18T00:54:00Z
. It also returns results in descending timestamp order.
Notice that the GROUP BY time() clause does not override the points’ original timestamps. See Issue 1 in the section below for a more detailed explanation of that behavior.
Common Issues with TOP()
Issue 1: TOP()
with a GROUP BY time()
clause
Queries with TOP()
and a GROUP BY time()
clause return the specified number of points per GROUP BY time()
interval. For most GROUP BY time()
queries, the returned timestamps mark the start of the GROUP BY time()
interval. GROUP BY time()
queries with the TOP()
function behave differently; they maintain the timestamp of the original data point.
Example
The query below returns two points per 18-minute GROUP BY time()
interval. Notice that the returned timestamps are the points’ original timestamps; they are not forced to match the start of the GROUP BY time()
intervals.
> SELECT TOP("water_level",2) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(18m) name: h2o_feet time top ---- ------ __ 2015-08-18T00:00:00Z 2.064 | 2015-08-18T00:06:00Z 2.116 | <------- Greatest points for the first time interval -- __ 2015-08-18T00:18:00Z 2.126 | 2015-08-18T00:30:00Z 2.051 | <------- Greatest points for the second time interval --
Issue 2: TOP() and a tag key with fewer than N tag values
Queries with the syntax SELECT TOP(<field_key>,<tag_key>,<N>)
can return fewer points than expected. If the tag key has X
tag values, the query specifies N
values, and X
is smaller than N
, then the query returns X
points.
Example
The query below asks for the greatest field values of water_level
for three tag values of the location
tag key. Because the location
tag key has two tag values (santa_monica
and coyote_creek
), the query returns two points instead of three.
> SELECT TOP("water_level","location",3) FROM "h2o_feet" name: h2o_feet time top location ---- --- -------- 2015-08-29T03:54:00Z 7.205 santa_monica 2015-08-29T07:24:00Z 9.964 coyote_creek
Issue 3: TOP(), tags, and the INTO clause
When combined with an INTO
clause and no GROUP BY tag
clause, most InfluxQL functions convert any tags in the initial data to fields in the newly written data. This behavior also applies to the TOP()
function unless TOP()
includes a tag key as an argument: TOP(field_key,tag_key(s),N)
. In those cases, the system preserves the specified tag as a tag in the newly written data.
Example
The first query in the codeblock below returns the greatest field values in the water_level
field key for two tag values associated with the location
tag key. It also writes those results to the top_water_levels
measurement.
The second query shows that InfluxDB preserved the location
tag as a tag in the top_water_levels
measurement.
> SELECT TOP("water_level","location",2) INTO "top_water_levels" FROM "h2o_feet" name: result time written ---- ------- 1970-01-01T00:00:00Z 2 > SHOW TAG KEYS FROM "top_water_levels" name: top_water_levels tagKey ------ location
Transformations
CEILING()
CEILING()
is not yet functional.
CUMULATIVE_SUM()
Returns the running total of subsequent field values.
Basic Syntax
SELECT CUMULATIVE_SUM( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Basic Syntax
CUMULATIVE_SUM(field_key)
Returns the running total of subsequent field values associated with the field key.
CUMULATIVE_SUM(/regular_expression/)
Returns the running total of subsequent field values associated with each field key that matches the regular expression.
CUMULATIVE_SUM(*)
Returns the running total of subsequent field values associated with each field key in the measurement.
CUMULATIVE_SUM()
supports int64 and float64 field value data types.
The basic syntax supports GROUP BY
clauses that group by tags but not GROUP BY
clauses that group by time. See the Advanced Syntax section for how to use CUMULATIVE_SUM()
with a GROUP BY time()
clause.
Examples of Basic Syntax
Examples 1-4 use the following subsample of the NOAA_water_database
data:
> SELECT "water_level" FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time water_level ---- ----------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 2.116 2015-08-18T00:12:00Z 2.028 2015-08-18T00:18:00Z 2.126 2015-08-18T00:24:00Z 2.041 2015-08-18T00:30:00Z 2.051
Example 1: Calculate the cumulative sum of the field values associated with a field key
> SELECT CUMULATIVE_SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time cumulative_sum ---- -------------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 4.18 2015-08-18T00:12:00Z 6.208 2015-08-18T00:18:00Z 8.334 2015-08-18T00:24:00Z 10.375 2015-08-18T00:30:00Z 12.426
The query returns the running total of the field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the cumulative sum of the field values associated with each field key in a measurement
> SELECT CUMULATIVE_SUM(*) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time cumulative_sum_water_level ---- -------------------------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 4.18 2015-08-18T00:12:00Z 6.208 2015-08-18T00:18:00Z 8.334 2015-08-18T00:24:00Z 10.375 2015-08-18T00:30:00Z 12.426
The query returns the running total of the field values for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the cumulative sum of the field values associated with each field key that matches a regular expression
> SELECT CUMULATIVE_SUM(/water/) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time cumulative_sum_water_level ---- -------------------------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 4.18 2015-08-18T00:12:00Z 6.208 2015-08-18T00:18:00Z 8.334 2015-08-18T00:24:00Z 10.375 2015-08-18T00:30:00Z 12.426
The query returns the running total of the field values for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the cumulative sum of the field values associated with a field key and include several clauses
> SELECT CUMULATIVE_SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' ORDER BY time DESC LIMIT 4 OFFSET 2 name: h2o_feet time cumulative_sum ---- -------------- 2015-08-18T00:18:00Z 6.218 2015-08-18T00:12:00Z 8.246 2015-08-18T00:06:00Z 10.362 2015-08-18T00:00:00Z 12.426
The query returns the running total of the field values associated with the water_level
field key. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:30:00Z
and returns results in descending timestamp order. The query also limits the number of points returned to four and offsets results by two points.
Advanced Syntax
SELECT CUMULATIVE_SUM(<function>( [ * | <field_key> | /<regular_expression>/ ] )) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Advanced Syntax
The advanced syntax requires a GROUP BY time()
clause and a nested InfluxQL function. The query first calculates the results for the nested function at the specified GROUP BY time()
interval and then applies the CUMULATIVE_SUM()
function to those results.
CUMULATIVE_SUM()
supports the following nested functions: COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
, MAX()
, and PERCENTILE()
.
Examples of Advanced Syntax
Example 1: Calculate the cumulative sum of mean values
> SELECT CUMULATIVE_SUM(MEAN("water_level")) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(12m) name: h2o_feet time cumulative_sum ---- -------------- 2015-08-18T00:00:00Z 2.09 2015-08-18T00:12:00Z 4.167 2015-08-18T00:24:00Z 6.213
The query returns the running total of average water_level
s that are calculated at 12-minute intervals.
To get those results, InfluxDB first calculates the average water_level
s at 12-minute intervals. This step is the same as using the MEAN()
function with the GROUP BY time()
clause and without CUMULATIVE_SUM()
:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(12m) name: h2o_feet time mean ---- ---- 2015-08-18T00:00:00Z 2.09 2015-08-18T00:12:00Z 2.077 2015-08-18T00:24:00Z 2.0460000000000003
Next, InfluxDB calculates the running total of those averages. The second point in the final results (4.167
) is the sum of 2.09
and 2.077
and the third point (6.213
) is the sum of 2.09
, 2.077
, and 2.0460000000000003
.
DERIVATIVE()
Returns the rate of change between subsequent field values.
Basic Syntax
SELECT DERIVATIVE( [ * | <field_key> | /<regular_expression>/ ] [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Basic Syntax
InfluxDB calculates the difference between subsequent field values and converts those results into the rate of change per unit
. The unit
argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit
the unit defaults to one second (1s
).
DERIVATIVE(field_key)
Returns the rate of change between subsequent field values associated with the field key.
DERIVATIVE(/regular_expression/)
Returns the rate of change between subsequent field values associated with each field key that matches the regular expression.
DERIVATIVE(*)
Returns the rate of change between subsequent field values associated with each field key in the measurement.
DERIVATIVE()
supports int64 and float64 field value data types.
The basic syntax supports GROUP BY
clauses that group by tags but not GROUP BY
clauses that group by time. See the Advanced Syntax section for how to use DERIVATIVE()
with a GROUP BY time()
clause.
Examples of Basic Syntax
Examples 1-5 use the following subsample of the NOAA_water_database
data:
> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time water_level ---- ----------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 2.116 2015-08-18T00:12:00Z 2.028 2015-08-18T00:18:00Z 2.126 2015-08-18T00:24:00Z 2.041 2015-08-18T00:30:00Z 2.051
Example 1: Calculate the derivative between the field values associated with a field key
> SELECT DERIVATIVE("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time derivative ---- ---------- 2015-08-18T00:06:00Z 0.00014444444444444457 2015-08-18T00:12:00Z -0.00024444444444444465 2015-08-18T00:18:00Z 0.0002722222222222218 2015-08-18T00:24:00Z -0.000236111111111111 2015-08-18T00:30:00Z 2.777777777777842e-05
The query returns the one-second rate of change between the field values associated with the water_level
field key and in the h2o_feet
measurement.
The first result (0.00014444444444444457
) is the one-second rate of change between the first two subsequent field values in the raw data. InfluxDB calculates the difference between the field values and normalizes that value to the one-second rate of change:
(2.116 - 2.064) / (360s / 1s) -------------- ---------- | | | the difference between the field values' timestamps / the default unit second field value - first field value
Example 2: Calculate the derivative between the field values associated with a field key and specify the unit option
> SELECT DERIVATIVE("water_level",6m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time derivative ---- ---------- 2015-08-18T00:06:00Z 0.052000000000000046 2015-08-18T00:12:00Z -0.08800000000000008 2015-08-18T00:18:00Z 0.09799999999999986 2015-08-18T00:24:00Z -0.08499999999999996 2015-08-18T00:30:00Z 0.010000000000000231
The query returns the six-minute rate of change between the field values associated with the water_level
field key and in the h2o_feet
measurement.
The first result (0.052000000000000046
) is the six-minute rate of change between the first two subsequent field values in the raw data. InfluxDB calculates the difference between the field values and normalizes that value to the six-minute rate of change:
(2.116 - 2.064) / (6m / 6m) -------------- ---------- | | | the difference between the field values' timestamps / the specified unit second field value - first field value
Example 3: Calculate the derivative between the field values associated with each field key in a measurement and specify the unit option
> SELECT DERIVATIVE(*,3m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time derivative_water_level ---- ---------------------- 2015-08-18T00:06:00Z 0.026000000000000023 2015-08-18T00:12:00Z -0.04400000000000004 2015-08-18T00:18:00Z 0.04899999999999993 2015-08-18T00:24:00Z -0.04249999999999998 2015-08-18T00:30:00Z 0.0050000000000001155
The query returns the three-minute rate of change between the field values associated with each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
The first result (0.026000000000000023
) is the three-minute rate of change between the first two subsequent field values in the raw data. InfluxDB calculates the difference between the field values and normalizes that value to the three-minute rate of change:
(2.116 - 2.064) / (6m / 3m) -------------- ---------- | | | the difference between the field values' timestamps / the specified unit second field value - first field value
Example 4: Calculate the derivative between the field values associated with each field key that matches a regular expression and specify the unit option
> SELECT DERIVATIVE(/water/,2m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time derivative_water_level ---- ---------------------- 2015-08-18T00:06:00Z 0.01733333333333335 2015-08-18T00:12:00Z -0.02933333333333336 2015-08-18T00:18:00Z 0.03266666666666662 2015-08-18T00:24:00Z -0.02833333333333332 2015-08-18T00:30:00Z 0.0033333333333334103
The query returns the two-minute rate of change between the field values associated with each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
The first result (0.01733333333333335
) is the two-minute rate of change between the first two subsequent field values in the raw data. InfluxDB calculates the difference between the field values and normalizes that value to the two-minute rate of change:
(2.116 - 2.064) / (6m / 2m) -------------- ---------- | | | the difference between the field values' timestamps / the specified unit second field value - first field value
Example 5: Calculate the derivative between the field values associated with a field key and include several clauses
> SELECT DERIVATIVE("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' ORDER BY time DESC LIMIT 1 OFFSET 2 name: h2o_feet time derivative ---- ---------- 2015-08-18T00:12:00Z -0.0002722222222222218
The query returns the one-second rate of change between the field values associated with the water_level
field key and in the h2o_feet
measurement. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:30:00Z
and returns results in descending timestamp order. The query also limits the number of points returned to one and offsets results by two points.
The only result (-0.0002722222222222218
) is the one-second rate of change between the relevant subsequent field values in the raw data. InfluxDB calculates the difference between the field values and normalizes that value to the one-second rate of change:
(2.126 - 2.028) / (360s / 1s) -------------- ---------- | | | the difference between the field values' timestamps / the default unit second field value - first field value
Advanced Syntax
SELECT DERIVATIVE(<function> ([ * | <field_key> | /<regular_expression>/ ]) [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Advanced Syntax
The advanced syntax requires a GROUP BY time()
clause and a nested InfluxQL function. The query first calculates the results for the nested function at the specified GROUP BY time()
interval and then applies the DERIVATIVE()
function to those results.
The unit
argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit
the unit
defaults to the GROUP BY time()
interval. Note that this behavior is different from the basic syntax’s default behavior.
DERIVATIVE()
supports the following nested functions: COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
, MAX()
, and PERCENTILE()
.
Examples of Advanced Syntax
Example 1: Calculate the derivative of mean values
> SELECT DERIVATIVE(MEAN("water_level")) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) name: h2o_feet time derivative ---- ---------- 2015-08-18T00:12:00Z -0.0129999999999999 2015-08-18T00:24:00Z -0.030999999999999694
The query returns the 12-minute rate of change between average water_level
s that are calculated at 12-minute intervals.
To get those results, InfluxDB first calculates the average water_level
s at 12-minute intervals. This step is the same as using the MEAN()
function with the GROUP BY time()
clause and without DERIVATIVE()
:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) name: h2o_feet time mean ---- ---- 2015-08-18T00:00:00Z 2.09 2015-08-18T00:12:00Z 2.077 2015-08-18T00:24:00Z 2.0460000000000003
Next, InfluxDB calculates the 12-minute rate of change between those averages. The first result (-0.0129999999999999
) is the 12-minute rate of change between the first two averages. InfluxDB calculates the difference between the field values and normalizes that value to the 12-minute rate of change.
(2.077 - 2.09) / (12m / 12m) ------------- ---------- | | | the difference between the field values' timestamps / the default unit second field value - first field value
Example 2: Calculate the derivative of mean values and specify the unit option
> SELECT DERIVATIVE(MEAN("water_level"),6m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) name: h2o_feet time derivative ---- ---------- 2015-08-18T00:12:00Z -0.00649999999999995 2015-08-18T00:24:00Z -0.015499999999999847
The query returns the six-minute rate of change between average water_level
s that are calculated at 12-minute intervals.
To get those results, InfluxDB first calculates the average water_level
s at 12-minute intervals. This step is the same as using the MEAN()
function with the GROUP BY time()
clause and without DERIVATIVE()
:
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) name: h2o_feet time mean ---- ---- 2015-08-18T00:00:00Z 2.09 2015-08-18T00:12:00Z 2.077 2015-08-18T00:24:00Z 2.0460000000000003
Next, InfluxDB calculates the six-minute rate of change between those averages. The first result (-0.00649999999999995
) is the six-minute rate of change between the first two averages. InfluxDB calculates the difference between the field values and normalizes that value to the six-minute rate of change.
(2.077 - 2.09) / (12m / 6m) ------------- ---------- | | | the difference between the field values' timestamps / the specified unit second field value - first field value
DIFFERENCE()
Returns the result of subtraction between subsequent field values.
Basic Syntax
SELECT DIFFERENCE( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Basic Syntax
DIFFERENCE(field_key)
Returns the difference between subsequent field values associated with the field key.
DIFFERENCE(/regular_expression/)
Returns the difference between subsequent field values associated with each field key that matches the regular expression.
DIFFERENCE(*)
Returns the difference between subsequent field values associated with each field key in the measurement.
DIFFERENCE()
supports int64 and float64 field value data types.
The basic syntax supports GROUP BY
clauses that group by tags but not GROUP BY
clauses that group by time. See the Advanced Syntax section for how to use DIFFERENCE()
with a GROUP BY time()
clause.
Examples of Basic Syntax
Examples 1-4 use the following subsample of the NOAA_water_database
data:
> SELECT "water_level" FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time water_level ---- ----------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 2.116 2015-08-18T00:12:00Z 2.028 2015-08-18T00:18:00Z 2.126 2015-08-18T00:24:00Z 2.041 2015-08-18T00:30:00Z 2.051
Example 1: Calculate the difference between the field values associated with a field key
> SELECT DIFFERENCE("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time difference ---- ---------- 2015-08-18T00:06:00Z 0.052000000000000046 2015-08-18T00:12:00Z -0.08800000000000008 2015-08-18T00:18:00Z 0.09799999999999986 2015-08-18T00:24:00Z -0.08499999999999996 2015-08-18T00:30:00Z 0.010000000000000231
The query returns the difference between the subsequent field values in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the difference between the field values associated with each field key in a measurement
> SELECT DIFFERENCE(*) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time difference_water_level ---- ---------------------- 2015-08-18T00:06:00Z 0.052000000000000046 2015-08-18T00:12:00Z -0.08800000000000008 2015-08-18T00:18:00Z 0.09799999999999986 2015-08-18T00:24:00Z -0.08499999999999996 2015-08-18T00:30:00Z 0.010000000000000231
The query returns the difference between the subsequent field values for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the difference between the field values associated with each field key that matches a regular expression
> SELECT DIFFERENCE(/water/) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' name: h2o_feet time difference_water_level ---- ---------------------- 2015-08-18T00:06:00Z 0.052000000000000046 2015-08-18T00:12:00Z -0.08800000000000008 2015-08-18T00:18:00Z 0.09799999999999986 2015-08-18T00:24:00Z -0.08499999999999996 2015-08-18T00:30:00Z 0.010000000000000231
The query returns the difference between the subsequent field values for each field key that stores numerical values and includes the word water
in the h2o_feet
measurement.
Example 4: Calculate the difference between the field values associated with a field key and include several clauses
> SELECT DIFFERENCE("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' ORDER BY time DESC LIMIT 2 OFFSET 2 name: h2o_feet time difference ---- ---------- 2015-08-18T00:12:00Z -0.09799999999999986 2015-08-18T00:06:00Z 0.08800000000000008
The query returns the difference between the subsequent field values in the water_level
field key. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:30:00Z
and returns results in descending timestamp order. They query also limits the number of points returned to two and offsets results by two points.
Advanced Syntax
SELECT DIFFERENCE(<function>( [ * | <field_key> | /<regular_expression>/ ] )) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Advanced Syntax
The advanced syntax requires a GROUP BY time()
clause and a nested InfluxQL function. The query first calculates the results for the nested function at the specified GROUP BY time()
interval and then applies the DIFFERENCE()
function to those results.
DIFFERENCE()
supports the following nested functions: COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
, MAX()
, and PERCENTILE()
.
Examples of Advanced Syntax
Example 1: Calculate the difference between maximum values
> SELECT DIFFERENCE(MAX("water_level")) FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(12m) name: h2o_feet time difference ---- ---------- 2015-08-18T00:12:00Z 0.009999999999999787 2015-08-18T00:24:00Z -0.07499999999999973
The query returns the difference between maximum water_level
s that are calculated at 12-minute intervals.
To get those results, InfluxDB first calculates the maximum water_level
s at 12-minute intervals. This step is the same as using the MAX()
function with the GROUP BY time()
clause and without DIFFERENCE()
:
> SELECT MAX("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica' GROUP BY time(12m) name: h2o_feet time max ---- --- 2015-08-18T00:00:00Z 2.116 2015-08-18T00:12:00Z 2.126 2015-08-18T00:24:00Z 2.051
Next, InfluxDB calculates the difference between those maximum values. The first point in the final results (0.009999999999999787
) is the difference between 2.126
and 2.116
, and the second point in the final results (-0.07499999999999973
) is the difference between 2.051
and 2.126
.
ELAPSED()
Returns the difference between subsequent field value’s timestamps.
Syntax
SELECT ELAPSED( [ * | <field_key> | /<regular_expression>/ ] [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
InfluxDB calculates the difference between subsequent timestamps. The unit
option is an integer followed by a duration literal and it determines the unit of the returned difference. If the query does not specify the unit
option the query returns the difference between timestamps in nanoseconds.
ELAPSED(field_key)
Returns the difference between subsequent timestamps associated with the field key.
ELAPSED(/regular_expression/)
Returns the difference between subsequent timestamps associated with each field key that matches the regular expression.
ELAPSED(*)
Returns the difference between subsequent timestamps associated with each field key in the measurement.
ELAPSED()
supports all field value data types.
Examples
Examples 1-5 use the following subsample of the NOAA_water_database
data:
> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' name: h2o_feet time water_level ---- ----------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 2.116 2015-08-18T00:12:00Z 2.028
Example 1: Calculate the elapsed time between field values associated with a field key
> SELECT ELAPSED("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' name: h2o_feet time elapsed ---- ------- 2015-08-18T00:06:00Z 360000000000 2015-08-18T00:12:00Z 360000000000
The query returns the difference (in nanoseconds) between subsequent timestamps in the water_level
field key and in the h2o_feet
measurement.
Example 2: Calculate the elapsed time between field values associated with a field key and specify the unit option
> SELECT ELAPSED("water_level",1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' name: h2o_feet time elapsed ---- ------- 2015-08-18T00:06:00Z 6 2015-08-18T00:12:00Z 6
The query returns the difference (in minutes) between subsequent timestamps in the water_level
field key and in the h2o_feet
measurement.
Example 3: Calculate the elapsed time between field values associated with each field key in a measurement and specify the unit option
> SELECT ELAPSED(*,1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' name: h2o_feet time elapsed_level description elapsed_water_level ---- ------------------------- ------------------- 2015-08-18T00:06:00Z 6 6 2015-08-18T00:12:00Z 6 6
The query returns the difference (in minutes) between subsequent timestamps associated with each field key in the h2o_feet
measurement. The h2o_feet
measurement has two field keys: level description
and water_level
.
Example 4: Calculate the elapsed time between field values associated with each field key that matches a regular expression and specify the unit option
> SELECT ELAPSED(/level/,1s) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' name: h2o_feet time elapsed_level description elapsed_water_level ---- ------------------------- ------------------- 2015-08-18T00:06:00Z 360 360 2015-08-18T00:12:00Z 360 360
The query returns the difference (in seconds) between subsequent timestamps associated with each field key that includes the word level
in the h2o_feet
measurement.
Example 5: Calculate the elapsed time between field values associated with a field key and include several clauses
> SELECT ELAPSED("water_level",1ms) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' ORDER BY time DESC LIMIT 1 OFFSET 1 name: h2o_feet time elapsed ---- ------- 2015-08-18T00:00:00Z -360000
The query returns the difference (in milliseconds) between subsequent timestamps in the water_level
field key and in the h2o_feet
measurement. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:12:00Z
and sorts timestamps in descending order. The query also limits the number of points returned to one and offsets results by one point.
Notice that the result is negative; the ORDER BY time DESC
clause sorts timestamps in descending order so ELAPSED()
calculates the difference between timestamps in reverse order.
Common Issues with ELAPSED()
Issue 1: ELAPSED() and units greater than the elapsed time
InfluxDB returns 0
if the unit
option is greater than the difference between the timestamps.
Example
The timestamps in the h2o_feet
measurement occur at six-minute intervals. If the query sets the unit
option to one hour, InfluxDB returns 0
:
> SELECT ELAPSED("water_level",1h) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:12:00Z' name: h2o_feet time elapsed ---- ------- 2015-08-18T00:06:00Z 0 2015-08-18T00:12:00Z 0
Issue 2: ELAPSED() with GROUP BY time() clauses
The ELAPSED()
function supports the GROUP BY time()
clause but the query results aren’t particularly useful. Currently, an ELAPSED()
query with a nested function and a GROUP BY time()
clause simply returns the interval specified in the GROUP BY time()
clause.
The GROUP BY time()
clause determines the timestamps in the results; each timestamp marks the start of a time interval. That behavior also applies to nested selector functions (like FIRST()
or MAX()
) which would, in all other cases, return a specific timestamp from the raw data. Because the GROUP BY time()
clause overrides the original timestamps, the ELAPSED()
calculation always returns the same value as the GROUP BY time()
interval.
Example
In the codeblock below, the first query attempts to use the ELAPSED()
function with a GROUP BY time()
clause to find the time elapsed (in minutes) between minimum water_level
s. The query returns 12 minutes for both time intervals.
To get those results, InfluxDB first calculates the minimum water_level
s at 12-minute intervals. The second query in the codeblock shows the results of that step. The step is the same as using the MIN()
function with the GROUP BY time()
clause and without the ELAPSED()
function. Notice that the timestamps returned by the second query are 12 minutes apart. In the raw data, the first result (2.057
) occurs at 2015-08-18T00:42:00Z
but the GROUP BY time()
clause overrides that original timestamp. Because the timestamps are determined by the GROUP BY time()
interval and not by the original data, the ELAPSED()
calculation always returns the same value as the GROUP BY time()
interval.
> SELECT ELAPSED(MIN("water_level"),1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:36:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m) name: h2o_feet time elapsed ---- ------- 2015-08-18T00:36:00Z 12 2015-08-18T00:48:00Z 12 > SELECT MIN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:36:00Z' AND time <= '2015-08-18T00:54:00Z' GROUP BY time(12m) name: h2o_feet time min ---- --- 2015-08-18T00:36:00Z 2.057 <--- Actually occurs at 2015-08-18T00:42:00Z 2015-08-18T00:48:00Z 1.991
FLOOR()
FLOOR()
is not yet functional.
HISTOGRAM()
HISTOGRAM()
is not yet functional.
MOVING_AVERAGE()
Returns the rolling average across a window of subsequent field values.
Basic Syntax
SELECT MOVING_AVERAGE( [ * | <field_key> | /<regular_expression>/ ] , <N> ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Basic Syntax
MOVING_AVERAGE()
calculates the rolling average across a window of N
subsequent field values. The N
argument is an integer and it is required.
MOVING_AVERAGE(field_key,N)
Returns the rolling average across N
field values associated with the field key.
MOVING_AVERAGE(/regular_expression/,N)
Returns the rolling average across N
field values associated with each field key that matches the regular expression.
MOVING_AVERAGE(*,N)
Returns the rolling average across N
field values associated with each field key in the measurement.
MOVING_AVERAGE()
int64 and float64 field value data types.
The basic syntax supports GROUP BY
clauses that group by tags but not GROUP BY
clauses that group by time. See the Advanced Syntax section for how to use MOVING_AVERAGE()
with a GROUP BY time()
clause.
Examples of Basic Syntax
Examples 1-4 use the following subsample of the NOAA_water_database
data:
> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time water_level ---- ----------- 2015-08-18T00:00:00Z 2.064 2015-08-18T00:06:00Z 2.116 2015-08-18T00:12:00Z 2.028 2015-08-18T00:18:00Z 2.126 2015-08-18T00:24:00Z 2.041 2015-08-18T00:30:00Z 2.051
Example 1: Calculate the moving average of the field values associated with a field key
> SELECT MOVING_AVERAGE("water_level",2) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time moving_average ---- -------------- 2015-08-18T00:06:00Z 2.09 2015-08-18T00:12:00Z 2.072 2015-08-18T00:18:00Z 2.077 2015-08-18T00:24:00Z 2.0835 2015-08-18T00:30:00Z 2.0460000000000003
The query returns the rolling average across a two-field-value window for the water_level
field key and the h2o_feet
measurement. The first result (2.09
) is the average of the first two points in the raw data: (2.064 + 2.116) / 2
). The second result (2.072
) is the average of the second two points in the raw data: (2.116 + 2.028) / 2
).
Example 2: Calculate the moving average of the field values associated with each field key in a measurement
> SELECT MOVING_AVERAGE(*,3) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time moving_average_water_level ---- -------------------------- 2015-08-18T00:12:00Z 2.0693333333333332 2015-08-18T00:18:00Z 2.09 2015-08-18T00:24:00Z 2.065 2015-08-18T00:30:00Z 2.0726666666666667
The query returns the rolling average across a three-field-value window for each field key that stores numerical values in the h2o_feet
measurement. The h2o_feet
measurement has one numerical field: water_level
.
Example 3: Calculate the moving average of the field values associated with each field key that matches a regular expression
> SELECT MOVING_AVERAGE(/level/,4) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' name: h2o_feet time moving_average_water_level ---- -------------------------- 2015-08-18T00:18:00Z 2.0835 2015-08-18T00:24:00Z 2.07775 2015-08-18T00:30:00Z 2.0615
The query returns the rolling average across a four-field-value window for each field key that stores numerical values and includes the word level
in the h2o_feet
measurement.
Example 4: Calculate the moving average of the field values associated with a field key and include several clauses
> SELECT MOVING_AVERAGE("water_level",2) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' ORDER BY time DESC LIMIT 2 OFFSET 3 name: h2o_feet time moving_average ---- -------------- 2015-08-18T00:06:00Z 2.072 2015-08-18T00:00:00Z 2.09
The query returns the rolling average across a two-field-value window for the water_level
field key in the h2o_feet
measurement. It covers the time range between 2015-08-18T00:00:00Z
and 2015-08-18T00:30:00Z
and returns results in descending timestamp order. The query also limits the number of points returned to two and offsets results by three points.
Advanced Syntax
SELECT MOVING_AVERAGE(<function> ([ * | <field_key> | /<regular_expression>/ ]) , N ) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Advanced Syntax
The advanced syntax requires a GROUP BY time()
clause and a nested InfluxQL function. The query first calculates the results for the nested function at the specified GROUP BY time()
interval and then applies the MOVING_AVERAGE()
function to those results.
MOVING_AVERAGE()
supports the following nested functions: COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
, MAX()
, and PERCENTILE()
.
Examples of Advanced Syntax
Example 1: Calculate the moving average of maximum values
> SELECT MOVING_AVERAGE(MAX("water_level"),2) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) name: h2o_feet time moving_average ---- -------------- 2015-08-18T00:12:00Z 2.121 2015-08-18T00:24:00Z 2.0885
The query returns the rolling average across a two-value window of maximum water_level
s that are calculated at 12-minute intervals.
To get those results, InfluxDB first calculates the maximum water_level
s at 12-minute intervals. This step is the same as using the MAX()
function with the GROUP BY time()
clause and without MOVING_AVERAGE()
:
> SELECT MAX("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' GROUP BY time(12m) name: h2o_feet time max ---- --- 2015-08-18T00:00:00Z 2.116 2015-08-18T00:12:00Z 2.126 2015-08-18T00:24:00Z 2.051
Next, InfluxDB calculates the rolling average across a two-value window using those maximum values. The first final result (2.121
) is the average of the first two maximum values ((2.116 + 2.126) / 2
).
NON_NEGATIVE_DERIVATIVE()
Returns the non-negative rate of change between subsequent field values. Non-negative rates of change include positive rates of change and rates of change that equal zero.
Basic Syntax
SELECT NON_NEGATIVE_DERIVATIVE( [ * | <field_key> | /<regular_expression>/ ] [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Basic Syntax
InfluxDB calculates the difference between subsequent field values and converts those results into the rate of change per unit
. The unit
argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit
, the unit defaults to one second (1s
). NON_NEGATIVE_DERIVATIVE()
returns only positive rates of change or rates of change that equal zero.
NON_NEGATIVE_DERIVATIVE(field_key)
Returns the non-negative rate of change between subsequent field values associated with the field key.
NON_NEGATIVE_DERIVATIVE(/regular_expression/)
Returns the non-negative rate of change between subsequent field values associated with each field key that matches the regular expression.
NON_NEGATIVE_DERIVATIVE(*)
Returns the non-negative rate of change between subsequent field values associated with each field key in the measurement.
NON_NEGATIVE_DERIVATIVE()
supports int64 and float64 field value data types.
The basic syntax supports GROUP BY
clauses that group by tags but not GROUP BY
clauses that group by time. See the Advanced Syntax section for how to use NON_NEGATIVE_DERIVATIVE()
with a GROUP BY time()
clause.
Examples of Basic Syntax
See the examples in the DERIVATIVE()
documentation. NON_NEGATIVE_DERIVATIVE()
behaves the same as the DERIVATIVE()
function but NON_NEGATIVE_DERIVATIVE()
returns only positive rates of change or rates of change that equal zero.
Advanced Syntax
SELECT NON_NEGATIVE_DERIVATIVE(<function> ([ * | <field_key> | /<regular_expression>/ ]) [ , <unit> ] ) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Advanced Syntax
The advanced syntax requires a GROUP BY time()
clause and a nested InfluxQL function. The query first calculates the results for the nested function at the specified GROUP BY time()
interval and then applies the NON_NEGATIVE_DERIVATIVE()
function to those results.
The unit
argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit
, the unit
defaults to the GROUP BY time()
interval. Note that this behavior is different from the basic syntax’s default behavior. NON_NEGATIVE_DERIVATIVE()
returns only positive rates of change or rates of change that equal zero.
NON_NEGATIVE_DERIVATIVE()
supports the following nested functions: COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
, MAX()
, and PERCENTILE()
.
Examples of Advanced Syntax
See the examples in the DERIVATIVE()
documentation. NON_NEGATIVE_DERIVATIVE()
behaves the same as the DERIVATIVE()
function but NON_NEGATIVE_DERIVATIVE()
returns only positive rates of change or rates of change that equal zero.
NON_NEGATIVE_DIFFERENCE()
Returns the non-negative result of subtraction between subsequent field values. Non-negative results of subtraction include positive differences and differences that equal zero.
Basic Syntax
SELECT NON_NEGATIVE_DIFFERENCE( [ * | <field_key> | /<regular_expression>/ ] ) [INTO_clause] FROM_clause [WHERE_clause] [GROUP_BY_clause] [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Basic Syntax
NON_NEGATIVE_DIFFERENCE(field_key)
Returns the non-negative difference between subsequent field values associated with the field key.
NON_NEGATIVE_DIFFERENCE(/regular_expression/)
Returns the non-negative difference between subsequent field values associated with each field key that matches the regular expression.
NON_NEGATIVE_DIFFERENCE(*)
Returns the non-negative difference between subsequent field values associated with each field key in the measurement.
NON_NEGATIVE_DIFFERENCE()
supports int64 and float64 field value data types.
The basic syntax supports GROUP BY
clauses that group by tags but not GROUP BY
clauses that group by time. See the Advanced Syntax section for how to use NON_NEGATIVE_DIFFERENCE()
with a GROUP BY time()
clause.
Examples of Basic Syntax
See the examples in the DIFFERENCE()
documentation. NON_NEGATIVE_DIFFERENCE()
behaves the same as the DIFFERENCE()
function but NON_NEGATIVE_DIFFERENCE()
returns only positive differences or differences that equal zero.
Advanced Syntax
SELECT NON_NEGATIVE_DIFFERENCE(<function>( [ * | <field_key> | /<regular_expression>/ ] )) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Advanced Syntax
The advanced syntax requires a GROUP BY time()
clause and a nested InfluxQL function. The query first calculates the results for the nested function at the specified GROUP BY time()
interval and then applies the NON_NEGATIVE_DIFFERENCE()
function to those results.
NON_NEGATIVE_DIFFERENCE()
supports the following nested functions: COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
, MAX()
, and PERCENTILE()
.
Examples of Advanced Syntax
See the examples in the DIFFERENCE()
documentation. NON_NEGATIVE_DIFFERENCE()
behaves the same as the DIFFERENCE()
function but NON_NEGATIVE_DIFFERENCE()
returns only positive differences or differences that equal zero.
Predictors
HOLT_WINTERS()
Returns N number of predicted field values using the Holt-Winters seasonal method.
Use HOLT_WINTERS()
to:
- Predict when data values will cross a given threshold
- Compare predicted values with actual values to detect anomalies in your data
Syntax
SELECT HOLT_WINTERS[_WITH-FIT](<function>(<field_key>),<N>,<S>) [INTO_clause] FROM_clause [WHERE_clause] GROUP_BY_clause [ORDER_BY_clause] [LIMIT_clause] [OFFSET_clause] [SLIMIT_clause] [SOFFSET_clause]
Description of Syntax
HOLT_WINTERS(function(field_key),N,S)
returns N
seasonally adjusted predicted field values for the specified field key.
The N
predicted values occur at the same interval as the GROUP BY time()
interval. If your GROUP BY time()
interval is 6m
and N
is 3
you’ll receive three predicted values that are each six minutes apart.
S
is the seasonal pattern parameter and delimits the length of a seasonal pattern according to the GROUP BY time()
interval. If your GROUP BY time()
interval is 2m
and S
is 3
, then the seasonal pattern occurs every six minutes, that is, every three data points. If you do not want to seasonally adjust your predicted values, set S
to 0
or 1.
HOLT_WINTERS_WITH_FIT(function(field_key),N,S)
returns the fitted values in addition to N
seasonally adjusted predicted field values for the specified field key.
HOLT_WINTERS()
and HOLT_WINTERS_WITH_FIT()
work with data that occur at consistent time intervals; the nested InfluxQL function and the GROUP BY time()
clause ensure that the Holt-Winters functions operate on regular data.
HOLT_WINTERS()
and HOLT_WINTERS_WITH_FIT()
support int64 and float64 field value data types.
Examples
Example 1: Predict field values associated with a field key
Raw Data
Example 1 uses Chronograf to visualize the data. The example focuses the following subsample of the NOAA_water_database
data:
SELECT "water_level" FROM "NOAA_water_database"."autogen"."h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-22 22:12:00' AND time <= '2015-08-28 03:00:00'
Step 1: Match the Trends of the Raw Data
Write a GROUP BY time()
query that matches the general trends of the raw water_level
data. Here, we use the FIRST()
function:
SELECT FIRST("water_level") FROM "NOAA_water_database"."autogen"."h2o_feet" WHERE "location"='santa_monica' and time >= '2015-08-22 22:12:00' and time <= '2015-08-28 03:00:00' GROUP BY time(379m,348m)
In the GROUP BY time()
clause, the first argument (379m
) matches the length of time that occurs between each peak and trough in the water_level
data. The second argument (348m
) is the offset interval. The offset interval alters InfluxDB’s default GROUP BY time()
boundaries to match the time range of the raw data.
The blue line shows the results of the query:
Step 2: Determine the Seasonal Pattern
Identify the seasonal pattern in the data using the information from the query in step 1.
Focusing on the blue line in the graph below, the pattern in the water_level
data repeats about every 25 hours and 15 minutes. There are four data points per season, so 4
is the seasonal pattern argument.
Step 3: Apply the HOLT_WINTERS() function
Add the Holt-Winters function to the query. Here, we use HOLT_WINTERS_WITH_FIT()
to view both the fitted values and the predicted values:
SELECT HOLT_WINTERS_WITH_FIT(FIRST("water_level"),10,4) FROM "NOAA_water_database"."autogen"."h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-22 22:12:00' AND time <= '2015-08-28 03:00:00' GROUP BY time(379m,348m)
In the HOLT_WINTERS_WITH_FIT()
function, the first argument (10
) requests 10 predicted field values. Each predicted point is 379m
apart, the same interval as the first argument in the GROUP BY time()
clause. The second argument in the HOLT_WINTERS_WITH_FIT()
function (4
) is the seasonal pattern that we determined in the previous step.
The blue line shows the results of the query:
Common Issues with HOLT_WINTERS()
Issue 1: HOLT_WINTERS()
and receiving fewer than N
points
In some cases, users may receive fewer predicted points than requested by the N
parameter. That behavior occurs when the math becomes unstable and cannot forecast more points. It implies that either HOLT_WINTERS()
is not suited for the dataset or that the seasonal adjustment parameter is invalid and is confusing the algorithm.
Other
Sample Data
The data used in this document are available for download on the Sample Data page.
General Syntax for Functions
Specify Multiple Functions in the SELECT Clause
Syntax
SELECT <function>(),<function>() FROM_clause [...]
Description of Syntax
Separate multiple functions in one SELECT
statement with a comma (,
). The syntax applies to all InfluxQL functions except TOP()
and BOTTOM()
. The SELECT
clause does not support specifying TOP()
or BOTTOM()
with another function.
Examples
Example 1: Calculate the mean and median field values in one query
> SELECT MEAN("water_level"),MEDIAN("water_level") FROM "h2o_feet" name: h2o_feet time mean median ---- ---- ------ 1970-01-01T00:00:00Z 4.442107025822522 4.124
The query returns the average and median field values in the water_level
field key.
Example 2: Calculate the mode of two fields in one query
> SELECT MODE("water_level"),MODE("level description") FROM "h2o_feet" name: h2o_feet time mode mode_1 ---- ---- ------ 1970-01-01T00:00:00Z 2.69 between 3 and 6 feet
The query returns the mode field values for the water_level
field key and for the level description
field key. The water_level
mode is in the mode
column and the level description
mode is in the mode_1
column. The system can’t return more than one column with the same name so it renames the second mode
column to mode_1
.
See Rename the Output Field Key for how to configure the output column headers.
Example 3: Calculate the minimum and maximum field values in one query
> SELECT MIN("water_level"), MAX("water_level") [...] name: h2o_feet time min max ---- --- --- 1970-01-01T00:00:00Z -0.61 9.964
The query returns the minimum and maximum field values in the water_level
field key.
Notice that the query returns 1970-01-01T00:00:00Z
, InfluxDB’s null-timestamp equivalent, as the timestamp. MIN()
and MAX()
are selector functions; when a selector function is the only function in the SELECT
clause, it returns a specific timestamp. Because MIN()
and MAX()
return two different timestamps (see below), the system overrides those timestamps with the null timestamp equivalent.
> SELECT MIN("water_level") FROM "h2o_feet" name: h2o_feet time min ---- --- 2015-08-29T14:30:00Z -0.61 <--- Timestamp 1 > SELECT MAX("water_level") FROM "h2o_feet" name: h2o_feet time max ---- --- 2015-08-29T07:24:00Z 9.964 <--- Timestamp 2
Rename the Output Field Key
Syntax
SELECT <function>() AS <field_key> [...]
Description of Syntax
By default, functions return results under a field key that matches the function name. Include an AS
clause to specify the name of the output field key.
Examples
Example 1: Specify the output field key
> SELECT MEAN("water_level") AS "dream_name" FROM "h2o_feet" name: h2o_feet time dream_name ---- ---------- 1970-01-01T00:00:00Z 4.442107025822522
The query returns the average field value of the water_level
field key and renames the output field key to dream_name
. Without the AS
clause, the query returns mean
as the output field key:
> SELECT MEAN("water_level") FROM "h2o_feet" name: h2o_feet time mean ---- ---- 1970-01-01T00:00:00Z 4.442107025822522
Example 2: Specify the output field key for multiple functions
> SELECT MEDIAN("water_level") AS "med_wat",MODE("water_level") AS "mode_wat" FROM "h2o_feet" name: h2o_feet time med_wat mode_wat ---- ------- -------- 1970-01-01T00:00:00Z 4.124 2.69
The query returns the median and mode field values for the water_level
field key and renames the output field keys to med_wat
and mode_wat
. Without the AS
clauses, the query returns median
and mode
as the output field keys:
> SELECT MEDIAN("water_level"),MODE("water_level") FROM "h2o_feet" name: h2o_feet time median mode ---- ------ ---- 1970-01-01T00:00:00Z 4.124 2.69
Change the Values Reported for Intervals with no Data
By default, queries with an InfluxQL function and a GROUP BY time()
clause report null values for intervals with no data. Include fill()
at the end of the GROUP BY
clause to change that value. See Data Exploration for a complete discussion of fill()
.
Common Issues with Functions
The following sections describe frequent sources of confusion with all functions, aggregation functions, and selector functions. See the function-specific documentation for common issues with individual functions:
All Functions
Issue 1: Nesting functions
Some InfluxQL functions support nesting in the SELECT
clause:
-
COUNT()
withDISTINCT()
CUMULATIVE_SUM()
DERIVATIVE()
DIFFERENCE()
ELAPSED()
MOVING_AVERAGE()
NON_NEGATIVE_DERIVATIVE()
-
HOLT_WINTERS()
andHOLT_WINTERS_WITH_FIT()
For other functions, use InfluxQL’s subqueries to nest functions in the FROM
clause. See the Data Exploration page more on using subqueries.
Issue 2: Querying time ranges after now()
Most SELECT
statements have a default time range between 1677-09-21 00:12:43.145224194
and 2262-04-11T23:47:16.854775806Z
UTC. For SELECT
statements with an InfluxQL function and a GROUP BY time()
clause, the default time range is between 1677-09-21 00:12:43.145224194
UTC and now()
.
To query data with timestamps that occur after now()
, SELECT
statements with an InfluxQL function and a GROUP BY time()
clause must provide an alternative upper bound in the WHERE
clause. See the Frequently Asked Questions page for an example.
Aggregation Functions
Issue 1: Understanding the returned timestamp
A query with an aggregation function and no time range in the WHERE
clause returns epoch 0 (1970-01-01T00:00:00Z
) as the timestamp. InfluxDB uses epoch 0 as the null timestamp equivalent. A query with an aggregate function that includes a time range in the WHERE
clause returns the lower time bound as the timestamp.
Examples
Example 1: Use an aggregate function without a specified time range
> SELECT SUM("water_level") FROM "h2o_feet" name: h2o_feet time sum ---- --- 1970-01-01T00:00:00Z 67777.66900000004
The query returns InfluxDB’s null timestamp equivalent (epoch 0: 1970-01-01T00:00:00Z
) as the timestamp. SUM()
aggregates points across several timestamps and has no single timestamp to return.
Example 2: Use an aggregate function with a specified time range
> SELECT SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' name: h2o_feet time sum ---- --- 2015-08-18T00:00:00Z 67777.66900000004
The query returns the lower time bound (WHERE time >= '2015-08-18T00:00:00Z'
) as the timestamp.
Example 3: Use an aggregate function with a specified time range and a GROUP BY time() clause
> SELECT SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:18:00Z' GROUP BY time(12m) name: h2o_feet time sum ---- --- 2015-08-18T00:00:00Z 20.305 2015-08-18T00:12:00Z 19.802999999999997
The query returns the lower time bound for each GROUP BY time()
interval as the timestamps.
Issue 2: Mixing aggregation functions with non-aggregates
Aggregation functions do not support specifying standalone field keys or tag keys in the SELECT
clause. Aggregation functions return a single calculated value and there is no obvious single value to return for any unaggregated fields or tags. Including a standalone field key or tag key with an aggregation function in the SELECT
clause returns an error:
> SELECT SUM("water_level"),"location" FROM "h2o_feet" ERR: error parsing query: mixing aggregate and non-aggregate queries is not supported
Issue 3: Getting slightly different results
For some aggregation functions, executing the same function on the same set of float64 points may yield slightly different results. InfluxDB does not sort points before it applies the aggregation function; that behavior can cause small discrepancies in the query results.
Selector Functions
Issue 1: Understanding the returned timestamp
The timestamps returned by selector functions depend on the number of functions in the query and on the other clauses in the query:
A query with a single selector function, a single field key argument, and no GROUP BY time()
clause returns the timestamp for the point that appears in the raw data. A query with a single selector function, multiple field key arguments, and no GROUP BY time()
clause returns the timestamp for the point that appears in the raw data or InfluxDB’s null timestamp equivalent (epoch 0: 1970-01-01T00:00:00Z
).
A query with more than one function and no time range in the WHERE
clause returns InfluxDB’s null timestamp equivalent (epoch 0: 1970-01-01T00:00:00Z
). A query with more than one function and a time range in the WHERE
clause returns the lower time bound as the timestamp.
A query with a selector function and a GROUP BY time()
clause returns the lower time bound for each GROUP BY time()
interval. Note that the SAMPLE()
function behaves differently from other selector functions when paired with the GROUP BY time()
clause. See Common Issues with SAMPLE()
for more information.
Examples
Example 1: Use a single selector function with a single field key and without a specified time range
> SELECT MAX("water_level") FROM "h2o_feet" name: h2o_feet time max ---- --- 2015-08-29T07:24:00Z 9.964 > SELECT MAX("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' name: h2o_feet time max ---- --- 2015-08-29T07:24:00Z 9.964
The queries return the timestamp for the maximum point that appears in the raw data.
Example 2: Use a single selector function with multiple field keys and without a specified time range
> SELECT FIRST(*) FROM "h2o_feet" name: h2o_feet time first_level description first_water_level ---- ----------------------- ----------------- 1970-01-01T00:00:00Z between 6 and 9 feet 8.12 > SELECT MAX(*) FROM "h2o_feet" name: h2o_feet time max_water_level ---- --------------- 2015-08-29T07:24:00Z 9.964
The first query returns InfluxDB’s null timestamp equivalent (epoch 0: 1970-01-01T00:00:00Z
) as the timestamp. FIRST(*)
returns two timestamps (one for each field key in the h2o_feet
measurement) so the system overrides those timestamps with the null timestamp equivalent.
The second query returns the timestamp for the maximum point that appears in the raw data. MAX(*)
returns one timestamp (the h2o-feet
measurement has only one numerical field) so the system does not overwrite the original timestamp.
Example 3: Use a selector function with another function and without a specified time range
> SELECT MAX("water_level"),MIN("water_level") FROM "h2o_feet" name: h2o_feet time max min ---- --- --- 1970-01-01T00:00:00Z 9.964 -0.61
The query returns InfluxDB’s null timestamp equivalent (epoch 0: 1970-01-01T00:00:00Z
) as the timestamp. The MAX()
and MIN()
functions return different timestamps so the system has no single timestamp to return.
Example 4: Use a selector function with another function and with a specified time range
> SELECT MAX("water_level"),MIN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' name: h2o_feet time max min ---- --- --- 2015-08-18T00:00:00Z 9.964 -0.61
The query returns the lower time bound (WHERE time >= '2015-08-18T00:00:00Z'
) as the timestamp.
Example 5: Use a selector function with a GROUP BY time() clause
> SELECT MAX("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:18:00Z' GROUP BY time(12m) name: h2o_feet time max ---- --- 2015-08-18T00:00:00Z 8.12 2015-08-18T00:12:00Z 7.887
The query returns the lower time bound for each GROUP BY time()
interval as the timestamp.
© 2015 InfluxData, Inc.
Licensed under the MIT license.
https://docs.influxdata.com/influxdb/v1.3/query_language/functions/