6 The Abstract Format
This document describes the standard representation of parse trees for Erlang programs as Erlang terms. This representation is known as the abstract format. Functions dealing with such parse trees are compile:forms/[1,2] and functions in the modules epp, erl_eval, erl_lint, erl_pp, erl_parse, and io. They are also used as input and output for parse transforms (see the module compile).
We use the function Rep to denote the mapping from an Erlang source construct C to its abstract format representation R, and write R = Rep(C).
The word LINE below represents an integer, and denotes the number of the line in the source file where the construction occurred. Several instances of LINE in the same construction may denote different lines.
Since operators are not terms in their own right, when operators are mentioned below, the representation of an operator should be taken to be the atom with a printname consisting of the same characters as the operator.
6.1 Module Declarations and Forms
A module declaration consists of a sequence of forms that are either function declarations or attributes.
- If D is a module declaration consisting of the forms
F_1, ...,F_k, then Rep(D) =[Rep(F_1), ..., Rep(F_k)]. - If F is an attribute
-module(Mod), then Rep(F) ={attribute,LINE,module,Mod}. - If F is an attribute
-behavior(Behavior), then Rep(F) ={attribute,LINE,behavior,Behavior}. - If F is an attribute
-behaviour(Behaviour), then Rep(F) ={attribute,LINE,behaviour,Behaviour}. - If F is an attribute
-export([Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) ={attribute,LINE,export,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}. - If F is an attribute
-import(Mod,[Fun_1/A_1, ..., Fun_k/A_k]), then Rep(F) ={attribute,LINE,import,{Mod,[{Fun_1,A_1}, ..., {Fun_k,A_k}]}}. - If F is an attribute
-export_type([Type_1/A_1, ..., Type_k/A_k]), then Rep(F) ={attribute,LINE,export_type,[{Type_1,A_1}, ..., {Type_k,A_k}]}. - If F is an attribute
-compile(Options), then Rep(F) ={attribute,LINE,compile,Options}. - If F is an attribute
-file(File,Line), then Rep(F) ={attribute,LINE,file,{File,Line}}. - If F is a record declaration
-record(Name,{V_1, ..., V_k}), then Rep(F) ={attribute,LINE,record,{Name,[Rep(V_1), ..., Rep(V_k)]}}. For Rep(V), see below. - If F is a type declaration
-Type Name(V_1, ..., V_k) :: T, whereTypeis either the atomtypeor the atomopaque, eachV_iis a variable, andTis a type, then Rep(F) ={attribute,LINE,Type,{Name,Rep(T),[Rep(V_1), ..., Rep(V_k)]}}. - If F is a function specification
-Spec Name Ft_1; ...; Ft_k, whereSpecis either the atomspecor the atomcallback, and eachFt_iis a possibly constrained function type with an argument sequence of the same lengthArity, then Rep(F) ={attribute,Line,Spec,{{Name,Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}. - If F is a function specification
-spec Mod:Name Ft_1; ...; Ft_k, where eachFt_iis a possibly constrained function type with an argument sequence of the same lengthArity, then Rep(F) ={attribute,Line,spec,{{Mod,Name,Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}. - If F is a wild attribute
-A(T), then Rep(F) ={attribute,LINE,A,T}.
- If F is a function declaration
Name Fc_1 ; ... ; Name Fc_k, where eachFc_iis a function clause with a pattern sequence of the same lengthArity, then Rep(F) ={function,LINE,Name,Arity,[Rep(Fc_1), ...,Rep(Fc_k)]}.
Record Fields
Each field in a record declaration may have an optional explicit default initializer expression, as well as an optional type.
- If V is
A, then Rep(V) ={record_field,LINE,Rep(A)}. - If V is
A = E, whereEis an expression, then Rep(V) ={record_field,LINE,Rep(A),Rep(E)}. - If V is
A :: T, whereTis a type and it does not containundefinedsyntactically, then Rep(V) ={typed_record_field,{record_field,LINE,Rep(A)},Rep(undefined | T)}. - If V is
A :: T, whereTis a type, then Rep(V) ={typed_record_field,{record_field,LINE,Rep(A)},Rep(T)}. - If V is
A = E :: T, whereEis an expression andTis a type, then Rep(V) ={typed_record_field,{record_field,LINE,Rep(A),Rep(E)},Rep(T)}.
Representation of Parse Errors and End-of-file
In addition to the representations of forms, the list that represents a module declaration (as returned by functions in erl_parse and epp) may contain tuples {error,E} and {warning,W}, denoting syntactically incorrect forms and warnings, and {eof,LINE}, denoting an end-of-stream encountered before a complete form had been parsed.
6.2 Atomic Literals
There are five kinds of atomic literals, which are represented in the same way in patterns, expressions and guards:
- If L is an integer or character literal, then Rep(L) =
{integer,LINE,L}. - If L is a float literal, then Rep(L) =
{float,LINE,L}. - If L is a string literal consisting of the characters
C_1, ...,C_k, then Rep(L) ={string,LINE,[C_1, ..., C_k]}. - If L is an atom literal, then Rep(L) =
{atom,LINE,L}.
Note that negative integer and float literals do not occur as such; they are parsed as an application of the unary negation operator.
6.3 Patterns
If Ps is a sequence of patterns P_1, ..., P_k, then Rep(Ps) = [Rep(P_1), ..., Rep(P_k)]. Such sequences occur as the list of arguments to a function or fun.
Individual patterns are represented as follows:
- If P is an atomic literal L, then Rep(P) = Rep(L).
- If P is a compound pattern
P_1 = P_2, then Rep(P) ={match,LINE,Rep(P_1),Rep(P_2)}. - If P is a variable pattern
V, then Rep(P) ={var,LINE,A}, where A is an atom with a printname consisting of the same characters asV. - If P is a universal pattern
_, then Rep(P) ={var,LINE,'_'}. - If P is a tuple pattern
{P_1, ..., P_k}, then Rep(P) ={tuple,LINE,[Rep(P_1), ..., Rep(P_k)]}. - If P is a nil pattern
[], then Rep(P) ={nil,LINE}. - If P is a cons pattern
[P_h | P_t], then Rep(P) ={cons,LINE,Rep(P_h),Rep(P_t)}. - If E is a binary pattern
<<P_1:Size_1/TSL_1, ..., P_k:Size_k/TSL_k>>, then Rep(E) ={bin,LINE,[{bin_element,LINE,Rep(P_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(P_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see below. An omittedSizeis represented bydefault. An omittedTSL(type specifier list) is represented bydefault. - If P is
P_1 Op P_2, whereOpis a binary operator (this is either an occurrence of++applied to a literal string or character list, or an occurrence of an expression that can be evaluated to a number at compile time), then Rep(P) ={op,LINE,Op,Rep(P_1),Rep(P_2)}. - If P is
Op P_0, whereOpis a unary operator (this is an occurrence of an expression that can be evaluated to a number at compile time), then Rep(P) ={op,LINE,Op,Rep(P_0)}. - If P is a record pattern
#Name{Field_1=P_1, ..., Field_k=P_k}, then Rep(P) ={record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(P_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(P_k)}]}. - If P is
#Name.Field, then Rep(P) ={record_index,LINE,Name,Rep(Field)}. - If P is
( P_0 ), then Rep(P) =Rep(P_0), that is, patterns cannot be distinguished from their bodies.
Note that every pattern has the same source form as some expression, and is represented the same way as the corresponding expression.
6.4 Expressions
A body B is a sequence of expressions E_1, ..., E_k, and Rep(B) = [Rep(E_1), ..., Rep(E_k)].
An expression E is one of the following alternatives:
- If P is an atomic literal
L, then Rep(P) = Rep(L). - If E is
P = E_0, then Rep(E) ={match,LINE,Rep(P),Rep(E_0)}. - If E is a variable
V, then Rep(E) ={var,LINE,A}, whereAis an atom with a printname consisting of the same characters asV. - If E is a tuple skeleton
{E_1, ..., E_k}, then Rep(E) ={tuple,LINE,[Rep(E_1), ..., Rep(E_k)]}. - If E is
[], then Rep(E) ={nil,LINE}. - If E is a cons skeleton
[E_h | E_t], then Rep(E) ={cons,LINE,Rep(E_h),Rep(E_t)}. - If E is a binary constructor
<<V_1:Size_1/TSL_1, ..., V_k:Size_k/TSL_k>>, then Rep(E) ={bin,LINE,[{bin_element,LINE,Rep(V_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(V_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see below. An omittedSizeis represented bydefault. An omittedTSL(type specifier list) is represented bydefault. - If E is
E_1 Op E_2, whereOpis a binary operator, then Rep(E) ={op,LINE,Op,Rep(E_1),Rep(E_2)}. - If E is
Op E_0, whereOpis a unary operator, then Rep(E) ={op,LINE,Op,Rep(E_0)}. - If E is
#Name{Field_1=E_1, ..., Field_k=E_k}, then Rep(E) ={record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. - If E is
E_0#Name{Field_1=E_1, ..., Field_k=E_k}, then Rep(E) ={record,LINE,Rep(E_0),Name,[{record_field,LINE,Rep(Field_1),Rep(E_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(E_k)}]}. - If E is
#Name.Field, then Rep(E) ={record_index,LINE,Name,Rep(Field)}. - If E is
E_0#Name.Field, then Rep(E) ={record_field,LINE,Rep(E_0),Name,Rep(Field)}. - If E is
#{W_1, ..., W_k}where eachW_iis a map assoc or exact field, then Rep(E) ={map,LINE,[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see below. - If E is
E_0#{W_1, ..., W_k}whereW_iis a map assoc or exact field, then Rep(E) ={map,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see below. - If E is
catch E_0, then Rep(E) ={'catch',LINE,Rep(E_0)}. - If E is
E_0(E_1, ..., E_k), then Rep(E) ={call,LINE,Rep(E_0),[Rep(E_1), ..., Rep(E_k)]}. - If E is
E_m:E_0(E_1, ..., E_k), then Rep(E) ={call,LINE,{remote,LINE,Rep(E_m),Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}. - If E is a list comprehension
[E_0 || W_1, ..., W_k], where eachW_iis a generator or a filter, then Rep(E) ={lc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see below. - If E is a binary comprehension
<<E_0 || W_1, ..., W_k>>, where eachW_iis a generator or a filter, then Rep(E) ={bc,LINE,Rep(E_0),[Rep(W_1), ..., Rep(W_k)]}. For Rep(W), see below. - If E is
begin B end, whereBis a body, then Rep(E) ={block,LINE,Rep(B)}. - If E is
if Ic_1 ; ... ; Ic_k end, where eachIc_iis an if clause then Rep(E) ={'if',LINE,[Rep(Ic_1), ..., Rep(Ic_k)]}. - If E is
case E_0 of Cc_1 ; ... ; Cc_k end, whereE_0is an expression and eachCc_iis a case clause then Rep(E) ={'case',LINE,Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_k)]}. - If E is
try B catch Tc_1 ; ... ; Tc_k end, whereBis a body and eachTc_iis a catch clause then Rep(E) ={'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[]}. - If E is
try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n end, whereBis a body, eachCc_iis a case clause and eachTc_jis a catch clause then Rep(E) ={'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[]}. - If E is
try B after A end, whereBandAare bodies then Rep(E) ={'try',LINE,Rep(B),[],[],Rep(A)}. - If E is
try B of Cc_1 ; ... ; Cc_k after A end, whereBandAare a bodies and eachCc_iis a case clause then Rep(E) ={'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[],Rep(A)}. - If E is
try B catch Tc_1 ; ... ; Tc_k after A end, whereBandAare bodies and eachTc_iis a catch clause then Rep(E) ={'try',LINE,Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],Rep(A)}. - If E is
try B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n after A end, whereBandAare a bodies, eachCc_iis a case clause and eachTc_jis a catch clause then Rep(E) ={'try',LINE,Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],Rep(A)}. - If E is
receive Cc_1 ; ... ; Cc_k end, where eachCc_iis a case clause then Rep(E) ={'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)]}. - If E is
receive Cc_1 ; ... ; Cc_k after E_0 -> B_t end, where eachCc_iis a case clause,E_0is an expression andB_tis a body, then Rep(E) ={'receive',LINE,[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}. - If E is
fun Name / Arity, then Rep(E) ={'fun',LINE,{function,Name,Arity}}. - If E is
fun Module:Name/Arity, then Rep(E) ={'fun',LINE,{function,Rep(Module),Rep(Name),Rep(Arity)}}. (Before the R15 release: Rep(E) ={'fun',LINE,{function,Module,Name,Arity}}.) - If E is
fun Fc_1 ; ... ; Fc_k endwhere eachFc_iis a function clause then Rep(E) ={'fun',LINE,{clauses,[Rep(Fc_1), ..., Rep(Fc_k)]}}. - If E is
fun Name Fc_1 ; ... ; Name Fc_k endwhereNameis a variable and eachFc_iis a function clause then Rep(E) ={named_fun,LINE,Name,[Rep(Fc_1), ..., Rep(Fc_k)]}. - If E is
( E_0 ), then Rep(E) =Rep(E_0), that is, parenthesized expressions cannot be distinguished from their bodies.
Generators and Filters
When W is a generator or a filter (in the body of a list or binary comprehension), then:
- If W is a generator
P <- E, wherePis a pattern andEis an expression, then Rep(W) ={generate,LINE,Rep(P),Rep(E)}. - If W is a generator
P <= E, wherePis a pattern andEis an expression, then Rep(W) ={b_generate,LINE,Rep(P),Rep(E)}. - If W is a filter
E, which is an expression, then Rep(W) =Rep(E).
Binary Element Type Specifiers
A type specifier list TSL for a binary element is a sequence of type specifiers TS_1 - ... - TS_k. Rep(TSL) = [Rep(TS_1), ..., Rep(TS_k)].
When TS is a type specifier for a binary element, then:
- If TS is an atom
A, then Rep(TS) =A. - If TS is a couple
A:ValuewhereAis an atom andValueis an integer, then Rep(TS) ={A,Value}.
Map Assoc and Exact Fields
When W is an assoc or exact field (in the body of a map), then:
- If W is an assoc field
K => V, whereKandVare both expressions, then Rep(W) ={map_field_assoc,LINE,Rep(K),Rep(V)}. - If W is an exact field
K := V, whereKandVare both expressions, then Rep(W) ={map_field_exact,LINE,Rep(K),Rep(V)}.
6.5 Clauses
There are function clauses, if clauses, case clauses and catch clauses.
A clause C is one of the following alternatives:
- If C is a function clause
( Ps ) -> BwherePsis a pattern sequence andBis a body, then Rep(C) ={clause,LINE,Rep(Ps),[],Rep(B)}. - If C is a function clause
( Ps ) when Gs -> BwherePsis a pattern sequence,Gsis a guard sequence andBis a body, then Rep(C) ={clause,LINE,Rep(Ps),Rep(Gs),Rep(B)}. - If C is an if clause
Gs -> BwhereGsis a guard sequence andBis a body, then Rep(C) ={clause,LINE,[],Rep(Gs),Rep(B)}. - If C is a case clause
P -> BwherePis a pattern andBis a body, then Rep(C) ={clause,LINE,[Rep(P)],[],Rep(B)}. - If C is a case clause
P when Gs -> BwherePis a pattern,Gsis a guard sequence andBis a body, then Rep(C) ={clause,LINE,[Rep(P)],Rep(Gs),Rep(B)}. - If C is a catch clause
P -> BwherePis a pattern andBis a body, then Rep(C) ={clause,LINE,[Rep({throw,P,_})],[],Rep(B)}. - If C is a catch clause
X : P -> BwhereXis an atomic literal or a variable pattern,Pis a pattern andBis a body, then Rep(C) ={clause,LINE,[Rep({X,P,_})],[],Rep(B)}. - If C is a catch clause
P when Gs -> BwherePis a pattern,Gsis a guard sequence andBis a body, then Rep(C) ={clause,LINE,[Rep({throw,P,_})],Rep(Gs),Rep(B)}. - If C is a catch clause
X : P when Gs -> BwhereXis an atomic literal or a variable pattern,Pis a pattern,Gsis a guard sequence andBis a body, then Rep(C) ={clause,LINE,[Rep({X,P,_})],Rep(Gs),Rep(B)}.
6.6 Guards
A guard sequence Gs is a sequence of guards G_1; ...; G_k, and Rep(Gs) = [Rep(G_1), ..., Rep(G_k)]. If the guard sequence is empty, Rep(Gs) = [].
A guard G is a nonempty sequence of guard tests Gt_1, ..., Gt_k, and Rep(G) = [Rep(Gt_1), ..., Rep(Gt_k)].
A guard test Gt is one of the following alternatives:
- If Gt is an atomic literal L, then Rep(Gt) = Rep(L).
- If Gt is a variable pattern
V, then Rep(Gt) ={var,LINE,A}, where A is an atom with a printname consisting of the same characters asV. - If Gt is a tuple skeleton
{Gt_1, ..., Gt_k}, then Rep(Gt) ={tuple,LINE,[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is
[], then Rep(Gt) ={nil,LINE}. - If Gt is a cons skeleton
[Gt_h | Gt_t], then Rep(Gt) ={cons,LINE,Rep(Gt_h),Rep(Gt_t)}. - If Gt is a binary constructor
<<Gt_1:Size_1/TSL_1, ..., Gt_k:Size_k/TSL_k>>, then Rep(Gt) ={bin,LINE,[{bin_element,LINE,Rep(Gt_1),Rep(Size_1),Rep(TSL_1)}, ..., {bin_element,LINE,Rep(Gt_k),Rep(Size_k),Rep(TSL_k)}]}. For Rep(TSL), see above. An omittedSizeis represented bydefault. An omittedTSL(type specifier list) is represented bydefault. - If Gt is
Gt_1 Op Gt_2, whereOpis a binary operator, then Rep(Gt) ={op,LINE,Op,Rep(Gt_1),Rep(Gt_2)}. - If Gt is
Op Gt_0, whereOpis a unary operator, then Rep(Gt) ={op,LINE,Op,Rep(Gt_0)}. - If Gt is
#Name{Field_1=Gt_1, ..., Field_k=Gt_k}, then Rep(E) ={record,LINE,Name,[{record_field,LINE,Rep(Field_1),Rep(Gt_1)}, ..., {record_field,LINE,Rep(Field_k),Rep(Gt_k)}]}. - If Gt is
#Name.Field, then Rep(Gt) ={record_index,LINE,Name,Rep(Field)}. - If Gt is
Gt_0#Name.Field, then Rep(Gt) ={record_field,LINE,Rep(Gt_0),Name,Rep(Field)}. - If Gt is
A(Gt_1, ..., Gt_k), whereAis an atom, then Rep(Gt) ={call,LINE,Rep(A),[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is
A_m:A(Gt_1, ..., Gt_k), whereA_mis the atomerlangandAis an atom or an operator, then Rep(Gt) ={call,LINE,{remote,LINE,Rep(A_m),Rep(A)},[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is
{A_m,A}(Gt_1, ..., Gt_k), whereA_mis the atomerlangandAis an atom or an operator, then Rep(Gt) ={call,LINE,Rep({A_m,A}),[Rep(Gt_1), ..., Rep(Gt_k)]}. - If Gt is
( Gt_0 ), then Rep(Gt) =Rep(Gt_0), that is, parenthesized guard tests cannot be distinguished from their bodies.
Note that every guard test has the same source form as some expression, and is represented the same way as the corresponding expression.
6.7 Types
- If T is an annotated type
Anno :: Type, whereAnnois a variable andTypeis a type, then Rep(T) ={ann_type,LINE,[Rep(Anno),Rep(Type)]}. - If T is an atom or integer literal L, then Rep(T) = Rep(L).
- If T is
L Op R, whereOpis a binary operator andLandRare types (this is an occurrence of an expression that can be evaluated to an integer at compile time), then Rep(T) ={op,LINE,Op,Rep(L),Rep(R)}. - If T is
Op A, whereOpis a unary operator andAis a type (this is an occurrence of an expression that can be evaluated to an integer at compile time), then Rep(T) ={op,LINE,Op,Rep(A)}. - If T is a bitstring type
<<_:M,_:_*N>>, whereMandNare singleton integer types, then Rep(T) ={type,LINE,binary,[Rep(M),Rep(N)]}. - If T is the empty list type
[], then Rep(T) ={type,Line,nil,[]}. - If T is a fun type
fun(), then Rep(T) ={type,LINE,'fun',[]}. - If T is a fun type
fun((...) -> B), whereBis a type, then Rep(T) ={type,LINE,'fun',[{type,LINE,any},Rep(B)]}. - If T is a fun type
fun(Ft), whereFtis a function type, then Rep(T) =Rep(Ft). - If T is an integer range type
L .. H, whereLandHare singleton integer types, then Rep(T) ={type,LINE,range,[Rep(L),Rep(H)]}. - If T is a map type
map(), then Rep(T) ={type,LINE,map,any}. - If T is a map type
#{P_1, ..., P_k}, where eachP_iis a map pair type, then Rep(T) ={type,LINE,map,[Rep(P_1), ..., Rep(P_k)]}. - If T is a map pair type
K => V, whereKandVare types, then Rep(T) ={type,LINE,map_field_assoc,[Rep(K),Rep(V)]}. - If T is a predefined (or built-in) type
N(A_1, ..., A_k), where eachA_iis a type, then Rep(T) ={type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}. - If T is a record type
#Name{F_1, ..., F_k}, where eachF_iis a record field type, then Rep(T) ={type,LINE,record,[Rep(Name),Rep(F_1), ..., Rep(F_k)]}. - If T is a record field type
Name :: Type, whereTypeis a type, then Rep(T) ={type,LINE,field_type,[Rep(Name),Rep(Type)]}. - If T is a remote type
M:N(A_1, ..., A_k), where eachA_iis a type, then Rep(T) ={remote_type,LINE,[Rep(M),Rep(N),[Rep(A_1), ..., Rep(A_k)]]}. - If T is a tuple type
tuple(), then Rep(T) ={type,LINE,tuple,any}. - If T is a tuple type
{A_1, ..., A_k}, where eachA_iis a type, then Rep(T) ={type,LINE,tuple,[Rep(A_1), ..., Rep(A_k)]}. - If T is a type union
T_1 | ... | T_k, where eachT_iis a type, then Rep(T) ={type,LINE,union,[Rep(T_1), ..., Rep(T_k)]}. - If T is a type variable
V, then Rep(T) ={var,LINE,A}, whereAis an atom with a printname consisting of the same characters asV. A type variable is any variable except underscore (_). - If T is a user-defined type
N(A_1, ..., A_k), where eachA_iis a type, then Rep(T) ={user_type,LINE,N,[Rep(A_1), ..., Rep(A_k)]}. - If T is
( T_0 ), then Rep(T) =Rep(T_0), that is, parenthesized types cannot be distinguished from their bodies.
Function Types
- If Ft is a constrained function type
Ft_1 when Fc, whereFt_1is a function type andFcis a function constraint, then Rep(T) ={type,LINE,bounded_fun,[Rep(Ft_1),Rep(Fc)]}. - If Ft is a function type
(A_1, ..., A_n) -> B, where eachA_iandBare types, then Rep(Ft) ={type,LINE,'fun',[{type,LINE,product,[Rep(A_1), ..., Rep(A_n)]},Rep(B)]}.
Function Constraints
A function constraint Fc is a nonempty sequence of constraints C_1, ..., C_k, and Rep(Fc) = [Rep(C_1), ..., Rep(C_k)].
- If C is a constraint
is_subtype(V, T)orV :: T, whereVis a type variable andTis a type, then Rep(C) ={type,LINE,constraint,[{atom,LINE,is_subtype},[Rep(V),Rep(T)]]}.
6.8 The Abstract Format After Preprocessing
The compilation option debug_info can be given to the compiler to have the abstract code stored in the abstract_code chunk in the BEAM file (for debugging purposes).
In OTP R9C and later, the abstract_code chunk will contain
{raw_abstract_v1,AbstractCode}
where AbstractCode is the abstract code as described in this document.
In releases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM file. The first element of the tuple would be either abstract_v1 (R7B) or abstract_v2 (R8B).
© 2010–2017 Ericsson AB
Licensed under the Apache License, Version 2.0.