io — Core tools for working with streams
New in version 2.6.
The io
module provides the Python interfaces to stream handling. Under Python 2.x, this is proposed as an alternative to the built-in file
object, but in Python 3.x it is the default interface to access files and streams.
Note
Since this module has been designed primarily for Python 3.x, you have to be aware that all uses of “bytes” in this document refer to the str
type (of which bytes
is an alias), and all uses of “text” refer to the unicode
type. Furthermore, those two types are not interchangeable in the io
APIs.
At the top of the I/O hierarchy is the abstract base class IOBase
. It defines the basic interface to a stream. Note, however, that there is no separation between reading and writing to streams; implementations are allowed to raise an IOError
if they do not support a given operation.
Extending IOBase
is RawIOBase
which deals simply with the reading and writing of raw bytes to a stream. FileIO
subclasses RawIOBase
to provide an interface to files in the machine’s file system.
BufferedIOBase
deals with buffering on a raw byte stream (RawIOBase
). Its subclasses, BufferedWriter
, BufferedReader
, and BufferedRWPair
buffer streams that are readable, writable, and both readable and writable. BufferedRandom
provides a buffered interface to random access streams. BytesIO
is a simple stream of in-memory bytes.
Another IOBase
subclass, TextIOBase
, deals with streams whose bytes represent text, and handles encoding and decoding from and to unicode
strings. TextIOWrapper
, which extends it, is a buffered text interface to a buffered raw stream (BufferedIOBase
). Finally, StringIO
is an in-memory stream for unicode text.
Argument names are not part of the specification, and only the arguments of open()
are intended to be used as keyword arguments.
1. Module Interface
-
io.DEFAULT_BUFFER_SIZE
-
An int containing the default buffer size used by the module’s buffered I/O classes.
open()
uses the file’s blksize (as obtained byos.stat()
) if possible.
-
io.open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
-
Open file and return a corresponding stream. If the file cannot be opened, an
IOError
is raised.file is either a string giving the pathname (absolute or relative to the current working directory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when the returned I/O object is closed, unless closefd is set to
False
.)mode is an optional string that specifies the mode in which the file is opened. It defaults to
'r'
which means open for reading in text mode. Other common values are'w'
for writing (truncating the file if it already exists), and'a'
for appending (which on some Unix systems, means that all writes append to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is platform dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available modes are:Character
Meaning
'r'
open for reading (default)
'w'
open for writing, truncating the file first
'a'
open for writing, appending to the end of the file if it exists
'b'
binary mode
't'
text mode (default)
'+'
open a disk file for updating (reading and writing)
'U'
universal newlines mode (for backwards compatibility; should not be used in new code)
The default mode is
'rt'
(open for reading text). For binary random access, the mode'w+b'
opens and truncates the file to 0 bytes, while'r+b'
opens the file without truncation.Python distinguishes between files opened in binary and text modes, even when the underlying operating system doesn’t. Files opened in binary mode (including
'b'
in the mode argument) return contents asbytes
objects without any decoding. In text mode (the default, or when't'
is included in the mode argument), the contents of the file are returned asunicode
strings, the bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:
- Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to determine the underlying device’s “block size” and falling back on
DEFAULT_BUFFER_SIZE
. On many systems, the buffer will typically be 4096 or 8192 bytes long. - “Interactive” text files (files for which
isatty()
returns True) use line buffering. Other text files use the policy described above for binary files.
encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode. The default encoding is platform dependent (whatever
locale.getpreferredencoding()
returns), but any encoding supported by Python can be used. See thecodecs
module for the list of supported encodings.errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be used in binary mode. Pass
'strict'
to raise aValueError
exception if there is an encoding error (the default ofNone
has the same effect), or pass'ignore'
to ignore errors. (Note that ignoring encoding errors can lead to data loss.)'replace'
causes a replacement marker (such as'?'
) to be inserted where there is malformed data. When writing,'xmlcharrefreplace'
(replace with the appropriate XML character reference) or'backslashreplace'
(replace with backslashed escape sequences) can be used. Any other error handling name that has been registered withcodecs.register_error()
is also valid.newline controls how universal newlines works (it only applies to text mode). It can be
None
,''
,'\n'
,'\r'
, and'\r\n'
. It works as follows:- On input, if newline is
None
, universal newlines mode is enabled. Lines in the input can end in'\n'
,'\r'
, or'\r\n'
, and these are translated into'\n'
before being returned to the caller. If it is''
, universal newlines mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and the line ending is returned to the caller untranslated. - On output, if newline is
None
, any'\n'
characters written are translated to the system default line separator,os.linesep
. If newline is''
, no translation takes place. If newline is any of the other legal values, any'\n'
characters written are translated to the given string.
If closefd is
False
and a file descriptor rather than a filename was given, the underlying file descriptor will be kept open when the file is closed. If a filename is given closefd has no effect and must beTrue
(the default).The type of file object returned by the
open()
function depends on the mode. Whenopen()
is used to open a file in a text mode ('w'
,'r'
,'wt'
,'rt'
, etc.), it returns a subclass ofTextIOBase
(specificallyTextIOWrapper
). When used to open a file in a binary mode with buffering, the returned class is a subclass ofBufferedIOBase
. The exact class varies: in read binary mode, it returns aBufferedReader
; in write binary and append binary modes, it returns aBufferedWriter
, and in read/write mode, it returns aBufferedRandom
. When buffering is disabled, the raw stream, a subclass ofRawIOBase
,FileIO
, is returned.It is also possible to use an
unicode
orbytes
string as a file for both reading and writing. Forunicode
stringsStringIO
can be used like a file opened in text mode, and forbytes
aBytesIO
can be used like a file opened in a binary mode. - Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to determine the underlying device’s “block size” and falling back on
-
exception io.BlockingIOError
-
Error raised when blocking would occur on a non-blocking stream. It inherits
IOError
.In addition to those of
IOError
,BlockingIOError
has one attribute:-
characters_written
-
An integer containing the number of characters written to the stream before it blocked.
-
-
exception io.UnsupportedOperation
-
An exception inheriting
IOError
andValueError
that is raised when an unsupported operation is called on a stream.
2. I/O Base Classes
-
class io.IOBase
-
The abstract base class for all I/O classes, acting on streams of bytes. There is no public constructor.
This class provides empty abstract implementations for many methods that derived classes can override selectively; the default implementations represent a file that cannot be read, written or seeked.
Even though
IOBase
does not declareread()
,readinto()
, orwrite()
because their signatures will vary, implementations and clients should consider those methods part of the interface. Also, implementations may raise anIOError
when operations they do not support are called.The basic type used for binary data read from or written to a file is
bytes
(also known asstr
). Method arguments may also bebytearray
ormemoryview
of arrays of bytes. In some cases, such asreadinto()
, a writable object such asbytearray
is required. Text I/O classes work withunicode
data.Changed in version 2.7: Implementations should support
memoryview
arguments.Note that calling any method (even inquiries) on a closed stream is undefined. Implementations may raise
IOError
in this case.IOBase (and its subclasses) support the iterator protocol, meaning that an
IOBase
object can be iterated over yielding the lines in a stream. Lines are defined slightly differently depending on whether the stream is a binary stream (yieldingbytes
), or a text stream (yieldingunicode
strings). Seereadline()
below.IOBase is also a context manager and therefore supports the
with
statement. In this example, file is closed after thewith
statement’s suite is finished—even if an exception occurs:with io.open('spam.txt', 'w') as file: file.write(u'Spam and eggs!')
IOBase
provides these data attributes and methods:-
close()
-
Flush and close this stream. This method has no effect if the file is already closed. Once the file is closed, any operation on the file (e.g. reading or writing) will raise a
ValueError
.As a convenience, it is allowed to call this method more than once; only the first call, however, will have an effect.
-
closed
-
True if the stream is closed.
-
fileno()
-
Return the underlying file descriptor (an integer) of the stream if it exists. An
IOError
is raised if the IO object does not use a file descriptor.
-
flush()
-
Flush the write buffers of the stream if applicable. This does nothing for read-only and non-blocking streams.
-
isatty()
-
Return
True
if the stream is interactive (i.e., connected to a terminal/tty device).
-
readable()
-
Return
True
if the stream can be read from. IfFalse
,read()
will raiseIOError
.
-
readline(limit=-1)
-
Read and return one line from the stream. If limit is specified, at most limit bytes will be read.
The line terminator is always
b'\n'
for binary files; for text files, the newline argument toopen()
can be used to select the line terminator(s) recognized.
-
readlines(hint=-1)
-
Read and return a list of lines from the stream. hint can be specified to control the number of lines read: no more lines will be read if the total size (in bytes/characters) of all lines so far exceeds hint.
Note that it’s already possible to iterate on file objects using
for line in file: ...
without callingfile.readlines()
.
-
seek(offset, whence=SEEK_SET)
-
Change the stream position to the given byte offset. offset is interpreted relative to the position indicated by whence. The default value for whence is
SEEK_SET
. Values for whence are:-
SEEK_SET
or0
– start of the stream (the default); offset should be zero or positive -
SEEK_CUR
or1
– current stream position; offset may be negative -
SEEK_END
or2
– end of the stream; offset is usually negative
Return the new absolute position.
New in version 2.7: The
SEEK_*
constants -
-
seekable()
-
Return
True
if the stream supports random access. IfFalse
,seek()
,tell()
andtruncate()
will raiseIOError
.
-
tell()
-
Return the current stream position.
-
truncate(size=None)
-
Resize the stream to the given size in bytes (or the current position if size is not specified). The current stream position isn’t changed. This resizing can extend or reduce the current file size. In case of extension, the contents of the new file area depend on the platform (on most systems, additional bytes are zero-filled, on Windows they’re undetermined). The new file size is returned.
-
writable()
-
Return
True
if the stream supports writing. IfFalse
,write()
andtruncate()
will raiseIOError
.
-
writelines(lines)
-
Write a list of lines to the stream. Line separators are not added, so it is usual for each of the lines provided to have a line separator at the end.
-
-
class io.RawIOBase
-
Base class for raw binary I/O. It inherits
IOBase
. There is no public constructor.Raw binary I/O typically provides low-level access to an underlying OS device or API, and does not try to encapsulate it in high-level primitives (this is left to Buffered I/O and Text I/O, described later in this page).
In addition to the attributes and methods from
IOBase
, RawIOBase provides the following methods:-
read(n=-1)
-
Read up to n bytes from the object and return them. As a convenience, if n is unspecified or -1,
readall()
is called. Otherwise, only one system call is ever made. Fewer than n bytes may be returned if the operating system call returns fewer than n bytes.If 0 bytes are returned, and n was not 0, this indicates end of file. If the object is in non-blocking mode and no bytes are available,
None
is returned.
-
readall()
-
Read and return all the bytes from the stream until EOF, using multiple calls to the stream if necessary.
-
readinto(b)
-
Read up to len(b) bytes into b, and return the number of bytes read. The object b should be a pre-allocated, writable array of bytes, either
bytearray
ormemoryview
. If the object is in non-blocking mode and no bytes are available,None
is returned.
-
write(b)
-
Write b to the underlying raw stream, and return the number of bytes written. The object b should be an array of bytes, either
bytes
,bytearray
, ormemoryview
. The return value can be less thanlen(b)
, depending on specifics of the underlying raw stream, and especially if it is in non-blocking mode.None
is returned if the raw stream is set not to block and no single byte could be readily written to it. The caller may release or mutate b after this method returns, so the implementation should only access b during the method call.
-
-
class io.BufferedIOBase
-
Base class for binary streams that support some kind of buffering. It inherits
IOBase
. There is no public constructor.The main difference with
RawIOBase
is that methodsread()
,readinto()
andwrite()
will try (respectively) to read as much input as requested or to consume all given output, at the expense of making perhaps more than one system call.In addition, those methods can raise
BlockingIOError
if the underlying raw stream is in non-blocking mode and cannot take or give enough data; unlike theirRawIOBase
counterparts, they will never returnNone
.Besides, the
read()
method does not have a default implementation that defers toreadinto()
.A typical
BufferedIOBase
implementation should not inherit from aRawIOBase
implementation, but wrap one, likeBufferedWriter
andBufferedReader
do.BufferedIOBase
provides or overrides these methods and attribute in addition to those fromIOBase
:-
raw
-
The underlying raw stream (a
RawIOBase
instance) thatBufferedIOBase
deals with. This is not part of theBufferedIOBase
API and may not exist on some implementations.
-
detach()
-
Separate the underlying raw stream from the buffer and return it.
After the raw stream has been detached, the buffer is in an unusable state.
Some buffers, like
BytesIO
, do not have the concept of a single raw stream to return from this method. They raiseUnsupportedOperation
.New in version 2.7.
-
read(n=-1)
-
Read and return up to n bytes. If the argument is omitted,
None
, or negative, data is read and returned until EOF is reached. An empty bytes object is returned if the stream is already at EOF.If the argument is positive, and the underlying raw stream is not interactive, multiple raw reads may be issued to satisfy the byte count (unless EOF is reached first). But for interactive raw streams, at most one raw read will be issued, and a short result does not imply that EOF is imminent.
A
BlockingIOError
is raised if the underlying raw stream is in non blocking-mode, and has no data available at the moment.
-
read1(n=-1)
-
Read and return up to n bytes, with at most one call to the underlying raw stream’s
read()
method. This can be useful if you are implementing your own buffering on top of aBufferedIOBase
object.
-
readinto(b)
-
Read up to len(b) bytes into b, and return the number of bytes read. The object b should be a pre-allocated, writable array of bytes, either
bytearray
ormemoryview
.Like
read()
, multiple reads may be issued to the underlying raw stream, unless the latter is ‘interactive’.A
BlockingIOError
is raised if the underlying raw stream is in non blocking-mode, and has no data available at the moment.
-
write(b)
-
Write b, and return the number of bytes written (always equal to
len(b)
, since if the write fails anIOError
will be raised). The object b should be an array of bytes, eitherbytes
,bytearray
, ormemoryview
. Depending on the actual implementation, these bytes may be readily written to the underlying stream, or held in a buffer for performance and latency reasons.When in non-blocking mode, a
BlockingIOError
is raised if the data needed to be written to the raw stream but it couldn’t accept all the data without blocking.The caller may release or mutate b after this method returns, so the implementation should only access b during the method call.
-
3. Raw File I/O
-
class io.FileIO(name, mode='r', closefd=True)
-
FileIO
represents an OS-level file containing bytes data. It implements theRawIOBase
interface (and therefore theIOBase
interface, too).The name can be one of two things:
- a string representing the path to the file which will be opened;
- an integer representing the number of an existing OS-level file descriptor to which the resulting
FileIO
object will give access.
The mode can be
'r'
,'w'
or'a'
for reading (default), writing, or appending. The file will be created if it doesn’t exist when opened for writing or appending; it will be truncated when opened for writing. Add a'+'
to the mode to allow simultaneous reading and writing.The
read()
(when called with a positive argument),readinto()
andwrite()
methods on this class will only make one system call.In addition to the attributes and methods from
IOBase
andRawIOBase
,FileIO
provides the following data attributes and methods:-
mode
-
The mode as given in the constructor.
-
name
-
The file name. This is the file descriptor of the file when no name is given in the constructor.
4. Buffered Streams
Buffered I/O streams provide a higher-level interface to an I/O device than raw I/O does.
-
class io.BytesIO([initial_bytes])
-
A stream implementation using an in-memory bytes buffer. It inherits
BufferedIOBase
.The optional argument initial_bytes is a
bytes
object that contains initial data.BytesIO
provides or overrides these methods in addition to those fromBufferedIOBase
andIOBase
:-
getvalue()
-
Return
bytes
containing the entire contents of the buffer.
-
read1()
-
In
BytesIO
, this is the same asread()
.
-
-
class io.BufferedReader(raw, buffer_size=DEFAULT_BUFFER_SIZE)
-
A buffer providing higher-level access to a readable, sequential
RawIOBase
object. It inheritsBufferedIOBase
. When reading data from this object, a larger amount of data may be requested from the underlying raw stream, and kept in an internal buffer. The buffered data can then be returned directly on subsequent reads.The constructor creates a
BufferedReader
for the given readable raw stream and buffer_size. If buffer_size is omitted,DEFAULT_BUFFER_SIZE
is used.BufferedReader
provides or overrides these methods in addition to those fromBufferedIOBase
andIOBase
:-
peek([n])
-
Return bytes from the stream without advancing the position. At most one single read on the raw stream is done to satisfy the call. The number of bytes returned may be less or more than requested.
-
read([n])
-
Read and return n bytes, or if n is not given or negative, until EOF or if the read call would block in non-blocking mode.
-
read1(n)
-
Read and return up to n bytes with only one call on the raw stream. If at least one byte is buffered, only buffered bytes are returned. Otherwise, one raw stream read call is made.
-
-
class io.BufferedWriter(raw, buffer_size=DEFAULT_BUFFER_SIZE)
-
A buffer providing higher-level access to a writeable, sequential
RawIOBase
object. It inheritsBufferedIOBase
. When writing to this object, data is normally held into an internal buffer. The buffer will be written out to the underlyingRawIOBase
object under various conditions, including:- when the buffer gets too small for all pending data;
- when
flush()
is called; - when a
seek()
is requested (forBufferedRandom
objects); - when the
BufferedWriter
object is closed or destroyed.
The constructor creates a
BufferedWriter
for the given writeable raw stream. If the buffer_size is not given, it defaults toDEFAULT_BUFFER_SIZE
.A third argument, max_buffer_size, is supported, but unused and deprecated.
BufferedWriter
provides or overrides these methods in addition to those fromBufferedIOBase
andIOBase
:-
flush()
-
Force bytes held in the buffer into the raw stream. A
BlockingIOError
should be raised if the raw stream blocks.
-
write(b)
-
Write b, and return the number of bytes written. The object b should be an array of bytes, either
bytes
,bytearray
, ormemoryview
. When in non-blocking mode, aBlockingIOError
is raised if the buffer needs to be written out but the raw stream blocks.
-
class io.BufferedRandom(raw, buffer_size=DEFAULT_BUFFER_SIZE)
-
A buffered interface to random access streams. It inherits
BufferedReader
andBufferedWriter
, and further supportsseek()
andtell()
functionality.The constructor creates a reader and writer for a seekable raw stream, given in the first argument. If the buffer_size is omitted it defaults to
DEFAULT_BUFFER_SIZE
.A third argument, max_buffer_size, is supported, but unused and deprecated.
BufferedRandom
is capable of anythingBufferedReader
orBufferedWriter
can do.
-
class io.BufferedRWPair(reader, writer, buffer_size=DEFAULT_BUFFER_SIZE)
-
A buffered I/O object combining two unidirectional
RawIOBase
objects – one readable, the other writeable – into a single bidirectional endpoint. It inheritsBufferedIOBase
.reader and writer are
RawIOBase
objects that are readable and writeable respectively. If the buffer_size is omitted it defaults toDEFAULT_BUFFER_SIZE
.A fourth argument, max_buffer_size, is supported, but unused and deprecated.
BufferedRWPair
implements all ofBufferedIOBase
’s methods except fordetach()
, which raisesUnsupportedOperation
.Warning
BufferedRWPair
does not attempt to synchronize accesses to its underlying raw streams. You should not pass it the same object as reader and writer; useBufferedRandom
instead.
5. Text I/O
-
class io.TextIOBase
-
Base class for text streams. This class provides a unicode character and line based interface to stream I/O. There is no
readinto()
method because Python’sunicode
strings are immutable. It inheritsIOBase
. There is no public constructor.TextIOBase
provides or overrides these data attributes and methods in addition to those fromIOBase
:-
encoding
-
The name of the encoding used to decode the stream’s bytes into strings, and to encode strings into bytes.
-
errors
-
The error setting of the decoder or encoder.
-
newlines
-
A string, a tuple of strings, or
None
, indicating the newlines translated so far. Depending on the implementation and the initial constructor flags, this may not be available.
-
buffer
-
The underlying binary buffer (a
BufferedIOBase
instance) thatTextIOBase
deals with. This is not part of theTextIOBase
API and may not exist on some implementations.
-
detach()
-
Separate the underlying binary buffer from the
TextIOBase
and return it.After the underlying buffer has been detached, the
TextIOBase
is in an unusable state.Some
TextIOBase
implementations, likeStringIO
, may not have the concept of an underlying buffer and calling this method will raiseUnsupportedOperation
.New in version 2.7.
-
read(n=-1)
-
Read and return at most n characters from the stream as a single
unicode
. If n is negative orNone
, reads until EOF.
-
readline(limit=-1)
-
Read until newline or EOF and return a single
unicode
. If the stream is already at EOF, an empty string is returned.If limit is specified, at most limit characters will be read.
-
seek(offset, whence=SEEK_SET)
-
Change the stream position to the given offset. Behaviour depends on the whence parameter. The default value for whence is
SEEK_SET
.-
SEEK_SET
or0
: seek from the start of the stream (the default); offset must either be a number returned byTextIOBase.tell()
, or zero. Any other offset value produces undefined behaviour. -
SEEK_CUR
or1
: “seek” to the current position; offset must be zero, which is a no-operation (all other values are unsupported). -
SEEK_END
or2
: seek to the end of the stream; offset must be zero (all other values are unsupported).
Return the new absolute position as an opaque number.
New in version 2.7: The
SEEK_*
constants. -
-
tell()
-
Return the current stream position as an opaque number. The number does not usually represent a number of bytes in the underlying binary storage.
-
write(s)
-
Write the
unicode
string s to the stream and return the number of characters written.
-
-
class io.TextIOWrapper(buffer, encoding=None, errors=None, newline=None, line_buffering=False)
-
A buffered text stream over a
BufferedIOBase
binary stream. It inheritsTextIOBase
.encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults to
locale.getpreferredencoding()
.errors is an optional string that specifies how encoding and decoding errors are to be handled. Pass
'strict'
to raise aValueError
exception if there is an encoding error (the default ofNone
has the same effect), or pass'ignore'
to ignore errors. (Note that ignoring encoding errors can lead to data loss.)'replace'
causes a replacement marker (such as'?'
) to be inserted where there is malformed data. When writing,'xmlcharrefreplace'
(replace with the appropriate XML character reference) or'backslashreplace'
(replace with backslashed escape sequences) can be used. Any other error handling name that has been registered withcodecs.register_error()
is also valid.newline controls how line endings are handled. It can be
None
,''
,'\n'
,'\r'
, and'\r\n'
. It works as follows:- On input, if newline is
None
, universal newlines mode is enabled. Lines in the input can end in'\n'
,'\r'
, or'\r\n'
, and these are translated into'\n'
before being returned to the caller. If it is''
, universal newlines mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and the line ending is returned to the caller untranslated. - On output, if newline is
None
, any'\n'
characters written are translated to the system default line separator,os.linesep
. If newline is''
, no translation takes place. If newline is any of the other legal values, any'\n'
characters written are translated to the given string.
If line_buffering is
True
,flush()
is implied when a call to write contains a newline character or a carriage return.TextIOWrapper
provides one attribute in addition to those ofTextIOBase
and its parents:-
line_buffering
-
Whether line buffering is enabled.
- On input, if newline is
-
class io.StringIO(initial_value=u'', newline=u'\n')
-
An in-memory stream for unicode text. It inherits
TextIOWrapper
.The initial value of the buffer can be set by providing initial_value. If newline translation is enabled, newlines will be encoded as if by
write()
. The stream is positioned at the start of the buffer.The newline argument works like that of
TextIOWrapper
. The default is to consider only\n
characters as ends of lines and to do no newline translation. If newline is set toNone
, newlines are written as\n
on all platforms, but universal newline decoding is still performed when reading.StringIO
provides this method in addition to those fromTextIOWrapper
and its parents:-
getvalue()
-
Return a
unicode
containing the entire contents of the buffer at any time before theStringIO
object’sclose()
method is called. Newlines are decoded as if byread()
, although the stream position is not changed.
Example usage:
import io output = io.StringIO() output.write(u'First line.\n') output.write(u'Second line.\n') # Retrieve file contents -- this will be # u'First line.\nSecond line.\n' contents = output.getvalue() # Close object and discard memory buffer -- # .getvalue() will now raise an exception. output.close()
-
-
class io.IncrementalNewlineDecoder
-
A helper codec that decodes newlines for universal newlines mode. It inherits
codecs.IncrementalDecoder
.
6. Advanced topics
Here we will discuss several advanced topics pertaining to the concrete I/O implementations described above.
6.1. Performance
6.1.1. Binary I/O
By reading and writing only large chunks of data even when the user asks for a single byte, buffered I/O is designed to hide any inefficiency in calling and executing the operating system’s unbuffered I/O routines. The gain will vary very much depending on the OS and the kind of I/O which is performed (for example, on some contemporary OSes such as Linux, unbuffered disk I/O can be as fast as buffered I/O). The bottom line, however, is that buffered I/O will offer you predictable performance regardless of the platform and the backing device. Therefore, it is most always preferable to use buffered I/O rather than unbuffered I/O.
6.1.2. Text I/O
Text I/O over a binary storage (such as a file) is significantly slower than binary I/O over the same storage, because it implies conversions from unicode to binary data using a character codec. This can become noticeable if you handle huge amounts of text data (for example very large log files). Also, TextIOWrapper.tell()
and TextIOWrapper.seek()
are both quite slow due to the reconstruction algorithm used.
StringIO
, however, is a native in-memory unicode container and will exhibit similar speed to BytesIO
.
6.2. Multi-threading
FileIO
objects are thread-safe to the extent that the operating system calls (such as read(2)
under Unix) they are wrapping are thread-safe too.
Binary buffered objects (instances of BufferedReader
, BufferedWriter
, BufferedRandom
and BufferedRWPair
) protect their internal structures using a lock; it is therefore safe to call them from multiple threads at once.
TextIOWrapper
objects are not thread-safe.
6.3. Reentrancy
Binary buffered objects (instances of BufferedReader
, BufferedWriter
, BufferedRandom
and BufferedRWPair
) are not reentrant. While reentrant calls will not happen in normal situations, they can arise if you are doing I/O in a signal
handler. If it is attempted to enter a buffered object again while already being accessed from the same thread, then a RuntimeError
is raised.
The above implicitly extends to text files, since the open()
function will wrap a buffered object inside a TextIOWrapper
. This includes standard streams and therefore affects the built-in function print()
as well.
© 2001–2020 Python Software Foundation
Licensed under the PSF License.
https://docs.python.org/2.7/library/io.html