21.5 Differences in Treatment of Zero Elements
Making diagonal and permutation matrices special matrix objects in their own right and the consequent usage of smarter algorithms for certain operations implies, as a side effect, small differences in treating zeros. The contents of this section apply also to sparse matrices, discussed in the following chapter. (see Sparse Matrices)
The IEEE floating point standard defines the result of the expressions 0*Inf
and 0*NaN
as NaN
. This is widely agreed to be a good compromise. Numerical software dealing with structured and sparse matrices (including Octave) however, almost always makes a distinction between a "numerical zero" and an "assumed zero". A "numerical zero" is a zero value occurring in a place where any floating-point value could occur. It is normally stored somewhere in memory as an explicit value. An "assumed zero", on the contrary, is a zero matrix element implied by the matrix structure (diagonal, triangular) or a sparsity pattern; its value is usually not stored explicitly anywhere, but is implied by the underlying data structure.
The primary distinction is that an assumed zero, when multiplied by any number, or divided by any nonzero number, yields always a zero, even when, e.g., multiplied by Inf
or divided by NaN
. The reason for this behavior is that the numerical multiplication is not actually performed anywhere by the underlying algorithm; the result is just assumed to be zero. Equivalently, one can say that the part of the computation involving assumed zeros is performed symbolically, not numerically.
This behavior not only facilitates the most straightforward and efficient implementation of algorithms, but also preserves certain useful invariants, like:
- scalar * diagonal matrix is a diagonal matrix
- sparse matrix / scalar preserves the sparsity pattern
- permutation matrix * matrix is equivalent to permuting rows
all of these natural mathematical truths would be invalidated by treating assumed zeros as numerical ones.
Note that MATLAB does not strictly follow this principle and converts assumed zeros to numerical zeros in certain cases, while not doing so in other cases. As of today, there are no intentions to mimic such behavior in Octave.
Examples of effects of assumed zeros vs. numerical zeros:
Inf * eye (3) ⇒ Inf 0 0 0 Inf 0 0 0 Inf Inf * speye (3) ⇒ Compressed Column Sparse (rows = 3, cols = 3, nnz = 3 [33%]) (1, 1) -> Inf (2, 2) -> Inf (3, 3) -> Inf Inf * full (eye (3)) ⇒ Inf NaN NaN NaN Inf NaN NaN NaN Inf
diag (1:3) * [NaN; 1; 1] ⇒ NaN 2 3 sparse (1:3,1:3,1:3) * [NaN; 1; 1] ⇒ NaN 2 3 [1,0,0;0,2,0;0,0,3] * [NaN; 1; 1] ⇒ NaN NaN NaN
© 1996–2020 John W. Eaton
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.
https://octave.org/doc/v6.3.0/Zeros-Treatment.html