matplotlib.scale
Scales define the distribution of data values on an axis, e.g. a log scaling.
They are attached to an Axis
and hold a Transform
, which is responsible for the actual data transformation.
See also axes.Axes.set_xscale
and the scales examples in the documentation.
-
class matplotlib.scale.FuncScale(axis, functions)
[source] -
Bases:
matplotlib.scale.ScaleBase
Provide an arbitrary scale with user-supplied function for the axis.
Parameters: -
axisAxis
-
The axis for the scale.
-
functions(callable, callable)
-
two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic.
Both functions must have the signature:
def forward(values: array-like) -> array-like
-
get_transform(self)
[source] -
Return the
FuncTransform
associated with this scale.
-
name = 'function'
-
set_default_locators_and_formatters(self, axis)
[source] -
Set the locators and formatters of axis to instances suitable for this scale.
-
-
class matplotlib.scale.FuncScaleLog(axis, functions, base=10)
[source] -
Bases:
matplotlib.scale.LogScale
Provide an arbitrary scale with user-supplied function for the axis and then put on a logarithmic axes.
Parameters: -
axismatplotlib.axis.Axis
-
The axis for the scale.
-
functions(callable, callable)
-
two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic.
Both functions must have the signature:
def forward(values: array-like) -> array-like
-
basefloat, default: 10
-
Logarithmic base of the scale.
-
property base
-
name = 'functionlog'
-
-
class matplotlib.scale.FuncTransform(forward, inverse)
[source] -
Bases:
matplotlib.transforms.Transform
A simple transform that takes and arbitrary function for the forward and inverse transform.
Parameters: -
forwardcallable
-
The forward function for the transform. This function must have an inverse and, for best behavior, be monotonic. It must have the signature:
def forward(values: array-like) -> array-like
-
inversecallable
-
The inverse of the forward function. Signature as
forward
.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, values)
[source] -
Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: -
valuesarray
-
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
-
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
-
-
class matplotlib.scale.InvertedLogTransform(base)
[source] -
Bases:
matplotlib.transforms.Transform
Parameters: -
shorthand_namestr
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, a)
[source] -
Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: -
valuesarray
-
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
-
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
-
-
class matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale)
[source] -
Bases:
matplotlib.transforms.Transform
Parameters: -
shorthand_namestr
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, a)
[source] -
Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: -
valuesarray
-
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
-
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
-
-
class matplotlib.scale.LinearScale(axis, **kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
The default linear scale.
-
get_transform(self)
[source] -
Return the transform for linear scaling, which is just the
IdentityTransform
.
-
name = 'linear'
-
set_default_locators_and_formatters(self, axis)
[source] -
Set the locators and formatters of axis to instances suitable for this scale.
-
-
class matplotlib.scale.LogScale(axis, **kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken to only plot positive values.
Parameters: -
axisAxis
-
The axis for the scale.
-
basefloat, default: 10
-
The base of the logarithm.
-
nonpositive{'clip', 'mask'}, default: 'clip'
-
Determines the behavior for non-positive values. They can either be masked as invalid, or clipped to a very small positive number.
-
subssequence of int, default: None
-
Where to place the subticks between each major tick. For example, in a log10 scale,
[2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
-
property InvertedLogTransform
-
property LogTransform
-
property base
-
get_transform(self)
[source] -
Return the
LogTransform
associated with this scale.
-
limit_range_for_scale(self, vmin, vmax, minpos)
[source] -
Limit the domain to positive values.
-
name = 'log'
-
set_default_locators_and_formatters(self, axis)
[source] -
Set the locators and formatters of axis to instances suitable for this scale.
-
-
class matplotlib.scale.LogTransform(**kwargs)
[source] -
Bases:
matplotlib.transforms.Transform
Parameters: -
shorthand_namestr
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, a)
[source] -
Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: -
valuesarray
-
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
-
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
-
-
class matplotlib.scale.LogisticTransform(**kwargs)
[source] -
Bases:
matplotlib.transforms.Transform
Parameters: -
shorthand_namestr
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, a)
[source] -
logistic transform (base 10)
-
-
class matplotlib.scale.LogitScale(**kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
Parameters: -
axismatplotlib.axis.Axis
-
Currently unused.
-
nonpositive{'mask', 'clip'}
-
Determines the behavior for values beyond the open interval ]0, 1[. They can either be masked as invalid, or clipped to a number very close to 0 or 1.
-
use_overlinebool, default: False
-
Indicate the usage of survival notation (overline{x}) in place of standard notation (1-x) for probability close to one.
-
one_halfstr, default: r"frac{1}{2}"
-
The string used for ticks formatter to represent 1/2.
-
get_transform(self)
[source] -
Return the
LogitTransform
associated with this scale.
-
limit_range_for_scale(self, vmin, vmax, minpos)
[source] -
Limit the domain to values between 0 and 1 (excluded).
-
name = 'logit'
-
set_default_locators_and_formatters(self, axis)
[source] -
Set the locators and formatters of axis to instances suitable for this scale.
-
-
class matplotlib.scale.LogitTransform(**kwargs)
[source] -
Bases:
matplotlib.transforms.Transform
Parameters: -
shorthand_namestr
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, a)
[source] -
logit transform (base 10), masked or clipped
-
-
class matplotlib.scale.ScaleBase(axis, **kwargs)
[source] -
Bases:
object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
And optionally:
Construct a new scale.
Notes
The following note is for scale implementors.
For back-compatibility reasons, scales take an
Axis
object as first argument. However, this argument should not be used: a single scale object should be usable by multipleAxis
es at the same time.-
limit_range_for_scale(self, vmin, vmax, minpos)
[source] -
Return the range vmin, vmax, restricted to the domain supported by this scale (if any).
minpos should be the minimum positive value in the data. This is used by log scales to determine a minimum value.
-
set_default_locators_and_formatters(self, axis)
[source] -
Set the locators and formatters of axis to instances suitable for this scale.
-
-
class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)
[source] -
Bases:
matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Parameters: -
basefloat, default: 10
-
The base of the logarithm.
-
linthreshfloat, default: 2
-
Defines the range
(-x, x)
, within which the plot is linear. This avoids having the plot go to infinity around zero. -
subssequence of int
-
Where to place the subticks between each major tick. For example, in a log10 scale:
[2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick. -
linscalefloat, optional
-
This allows the linear range
(-linthresh, linthresh)
to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range.
Construct a new scale.
Notes
The following note is for scale implementors.
For back-compatibility reasons, scales take an
Axis
object as first argument. However, this argument should not be used: a single scale object should be usable by multipleAxis
es at the same time.-
property InvertedSymmetricalLogTransform
-
property SymmetricalLogTransform
-
property base
-
get_transform(self)
[source] -
Return the
SymmetricalLogTransform
associated with this scale.
-
property linscale
-
property linthresh
-
name = 'symlog'
-
set_default_locators_and_formatters(self, axis)
[source] -
Set the locators and formatters of axis to instances suitable for this scale.
-
-
class matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)
[source] -
Bases:
matplotlib.transforms.Transform
Parameters: -
shorthand_namestr
-
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse = True
-
input_dims = 1
-
inverted(self)
[source] -
Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable = True
-
output_dims = 1
-
transform_non_affine(self, a)
[source] -
Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: -
valuesarray
-
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
-
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
-
-
matplotlib.scale.get_scale_names()
[source] -
Return the names of the available scales.
-
matplotlib.scale.register_scale(scale_class)
[source] -
Register a new kind of scale.
Parameters: -
scale_classsubclass of ScaleBase
-
The scale to register.
-
-
matplotlib.scale.scale_factory(scale, axis, **kwargs)
[source] -
Return a scale class by name.
Parameters: -
scale{'function', 'functionlog', 'linear', 'log', 'logit', 'symlog'}
-
axismatplotlib.axis.Axis
-
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.3.3/api/scale_api.html