matplotlib.colors.PowerNorm
-
class matplotlib.colors.PowerNorm(gamma, vmin=None, vmax=None, clip=False)
[source] -
Bases:
matplotlib.colors.Normalize
Linearly map a given value to the 0-1 range and then apply a power-law normalization over that range.
Parameters: -
vmin, vmaxfloat or None
-
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)
callsautoscale_None(A)
. -
clipbool, default: False
-
If
True
values falling outside the range[vmin, vmax]
, are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalse
masked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False
.
Notes
Returns 0 if
vmin == vmax
.-
__call__(self, value, clip=None)
[source] -
Normalize value data in the
[vmin, vmax]
interval into the[0.0, 1.0]
interval and return it.Parameters: - value
-
Data to normalize.
-
clipbool
-
If
None
, defaults toself.clip
(which defaults toFalse
).
Notes
If not already initialized,
self.vmin
andself.vmax
are initialized usingself.autoscale_None(value)
.
-
__init__(self, gamma, vmin=None, vmax=None, clip=False)
[source] -
Parameters: -
vmin, vmaxfloat or None
-
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)
callsautoscale_None(A)
. -
clipbool, default: False
-
If
True
values falling outside the range[vmin, vmax]
, are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalse
masked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False
.
Notes
Returns 0 if
vmin == vmax
. -
-
__module__ = 'matplotlib.colors'
-
__slotnames__ = []
-
inverse(self, value)
[source]
-
Examples using matplotlib.colors.PowerNorm
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.colors.PowerNorm.html