Mathematics
Mathematical Operators
Base.:-Method
-(x)
Unary minus operator.
Examples
julia> -1
-1
julia> -(2)
-2
julia> -[1 2; 3 4]
2×2 Array{Int64,2}:
-1 -2
-3 -4
source
Base.:+Function
+(x, y...)
Addition operator. x+y+z+... calls this function with all arguments, i.e. +(x, y, z, ...).
Examples
julia> 1 + 20 + 4 25 julia> +(1, 20, 4) 25source
dt::Date + t::Time -> DateTime
The addition of a Date with a Time produces a DateTime. The hour, minute, second, and millisecond parts of the Time are used along with the year, month, and day of the Date to create the new DateTime. Non-zero microseconds or nanoseconds in the Time type will result in an InexactError being thrown.
Base.:-Method
-(x, y)
Subtraction operator.
Examples
julia> 2 - 3 -1 julia> -(2, 4.5) -2.5source
Base.:*Method
*(x, y...)
Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).
Examples
julia> 2 * 7 * 8 112 julia> *(2, 7, 8) 112source
Base.:/Function
/(x, y)
Right division operator: multiplication of x by the inverse of y on the right. Gives floating-point results for integer arguments.
Examples
julia> 1/2 0.5 julia> 4/2 2.0 julia> 4.5/2 2.25source
Base.:\Method
\(x, y)
Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for integer arguments.
Examples
julia> 3 \ 6
2.0
julia> inv(3) * 6
2.0
julia> A = [4 3; 2 1]; x = [5, 6];
julia> A \ x
2-element Array{Float64,1}:
6.5
-7.0
julia> inv(A) * x
2-element Array{Float64,1}:
6.5
-7.0
source
Base.:^Method
^(x, y)
Exponentiation operator. If x is a matrix, computes matrix exponentiation.
If y is an Int literal (e.g. 2 in x^2 or -3 in x^-3), the Julia code x^y is transformed by the compiler to Base.literal_pow(^, x, Val(y)), to enable compile-time specialization on the value of the exponent. (As a default fallback we have Base.literal_pow(^, x, Val(y)) = ^(x,y), where usually ^ == Base.^ unless ^ has been defined in the calling namespace.)
julia> 3^5
243
julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> A^3
2×2 Array{Int64,2}:
37 54
81 118
source
Base.fmaFunction
fma(x, y, z)
Computes x*y+z without rounding the intermediate result x*y. On some systems this is significantly more expensive than x*y+z. fma is used to improve accuracy in certain algorithms. See muladd.
Base.muladdFunction
muladd(x, y, z)
Combined multiply-add: computes x*y+z, but allowing the add and multiply to be merged with each other or with surrounding operations for performance. For example, this may be implemented as an fma if the hardware supports it efficiently. The result can be different on different machines and can also be different on the same machine due to constant propagation or other optimizations. See fma.
Examples
julia> muladd(3, 2, 1) 7 julia> 3 * 2 + 1 7source
Base.invMethod
inv(x)
Return the multiplicative inverse of x, such that x*inv(x) or inv(x)*x yields one(x) (the multiplicative identity) up to roundoff errors.
If x is a number, this is essentially the same as one(x)/x, but for some types inv(x) may be slightly more efficient.
Examples
julia> inv(2) 0.5 julia> inv(1 + 2im) 0.2 - 0.4im julia> inv(1 + 2im) * (1 + 2im) 1.0 + 0.0im julia> inv(2//3) 3//2source
Base.divFunction
div(x, y) ÷(x, y)
The quotient from Euclidean division. Computes x/y, truncated to an integer.
Examples
julia> 9 ÷ 4 2 julia> -5 ÷ 3 -1source
Base.fldFunction
fld(x, y)
Largest integer less than or equal to x/y.
Examples
julia> fld(7.3,5.5) 1.0source
Base.cldFunction
cld(x, y)
Smallest integer larger than or equal to x/y.
Examples
julia> cld(5.5,2.2) 3.0source
Base.modFunction
mod(x, y) rem(x, y, RoundDown)
The reduction of x modulo y, or equivalently, the remainder of x after floored division by y, i.e.
x - y*fld(x,y)
if computed without intermediate rounding.
The result will have the same sign as y, and magnitude less than abs(y) (with some exceptions, see note below).
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to y, then it may be rounded to y.
julia> mod(8, 3) 2 julia> mod(9, 3) 0 julia> mod(8.9, 3) 2.9000000000000004 julia> mod(eps(), 3) 2.220446049250313e-16 julia> mod(-eps(), 3) 3.0source
rem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find y::T such that x ≡ y (mod n), where n is the number of integers representable in T, and y is an integer in [typemin(T),typemax(T)]. If T can represent any integer (e.g. T == BigInt), then this operation corresponds to a conversion to T.
Examples
julia> 129 % Int8 -127source
Base.remFunction
rem(x, y) %(x, y)
Remainder from Euclidean division, returning a value of the same sign as x, and smaller in magnitude than y. This value is always exact.
Examples
julia> x = 15; y = 4; julia> x % y 3 julia> x == div(x, y) * y + rem(x, y) truesource
Base.Math.rem2piFunction
rem2pi(x, r::RoundingMode)
Compute the remainder of x after integer division by 2π, with the quotient rounded according to the rounding mode r. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result than rem(x,2π,r)
if
r == RoundNearest, then the result is in the interval $[-π, π]$. This will generally be the most accurate result. See alsoRoundNearest.if
r == RoundToZero, then the result is in the interval $[0, 2π]$ ifxis positive,. or $[-2π, 0]$ otherwise. See alsoRoundToZero.if
r == RoundDown, then the result is in the interval $[0, 2π]$. See alsoRoundDown.if
r == RoundUp, then the result is in the interval $[-2π, 0]$. See alsoRoundUp.
Examples
julia> rem2pi(7pi/4, RoundNearest) -0.7853981633974485 julia> rem2pi(7pi/4, RoundDown) 5.497787143782138source
Base.Math.mod2piFunction
mod2pi(x)
Modulus after division by 2π, returning in the range $[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact 2π, and is therefore not exactly the same as mod(x,2π), which would compute the modulus of x relative to division by the floating-point number 2π.
Examples
julia> mod2pi(9*pi/4) 0.7853981633974481source
Base.divremFunction
divrem(x, y)
The quotient and remainder from Euclidean division. Equivalent to (div(x,y), rem(x,y)) or (x÷y, x%y).
Examples
julia> divrem(3,7) (0, 3) julia> divrem(7,3) (2, 1)source
Base.fldmodFunction
fldmod(x, y)
The floored quotient and modulus after division. Equivalent to (fld(x,y), mod(x,y)).
Base.fld1Function
fld1(x, y)
Flooring division, returning a value consistent with mod1(x,y)
Examples
julia> x = 15; y = 4; julia> fld1(x, y) 4 julia> x == fld(x, y) * y + mod(x, y) true julia> x == (fld1(x, y) - 1) * y + mod1(x, y) truesource
Base.mod1Function
mod1(x, y)
Modulus after flooring division, returning a value r such that mod(r, y) == mod(x, y) in the range $(0, y]$ for positive y and in the range $[y,0)$ for negative y.
Examples
julia> mod1(4, 2) 2 julia> mod1(4, 3) 1source
Base.fldmod1Function
fldmod1(x, y)
Return (fld1(x,y), mod1(x,y)).
Base.://Function
//(num, den)
Divide two integers or rational numbers, giving a Rational result.
Examples
julia> 3 // 5 3//5 julia> (3 // 5) // (2 // 1) 3//10source
Base.rationalizeFunction
rationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point number x as a Rational number with components of the given integer type. The result will differ from x by no more than tol.
Examples
julia> rationalize(5.6) 28//5 julia> a = rationalize(BigInt, 10.3) 103//10 julia> typeof(numerator(a)) BigIntsource
Base.numeratorFunction
numerator(x)
Numerator of the rational representation of x.
Examples
julia> numerator(2//3) 2 julia> numerator(4) 4source
Base.denominatorFunction
denominator(x)
Denominator of the rational representation of x.
Examples
julia> denominator(2//3) 3 julia> denominator(4) 1source
Base.:<<Function
<<(x, n)
Left bit shift operator, x << n. For n >= 0, the result is x shifted left by n bits, filling with 0s. This is equivalent to x * 2^n. For n < 0, this is equivalent to x >> -n.
Examples
julia> Int8(3) << 2 12 julia> bitstring(Int8(3)) "00000011" julia> bitstring(Int8(12)) "00001100"source
<<(B::BitVector, n) -> BitVector
Left bit shift operator, B << n. For n >= 0, the result is B with elements shifted n positions backwards, filling with false values. If n < 0, elements are shifted forwards. Equivalent to B >> -n.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitArray{1}:
true
false
true
false
false
julia> B << 1
5-element BitArray{1}:
false
true
false
false
false
julia> B << -1
5-element BitArray{1}:
false
true
false
true
false
source
Base.:>>Function
>>(x, n)
Right bit shift operator, x >> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling with 0s if x >= 0, 1s if x < 0, preserving the sign of x. This is equivalent to fld(x, 2^n). For n < 0, this is equivalent to x << -n.
Examples
julia> Int8(13) >> 2 3 julia> bitstring(Int8(13)) "00001101" julia> bitstring(Int8(3)) "00000011" julia> Int8(-14) >> 2 -4 julia> bitstring(Int8(-14)) "11110010" julia> bitstring(Int8(-4)) "11111100"source
>>(B::BitVector, n) -> BitVector
Right bit shift operator, B >> n. For n >= 0, the result is B with elements shifted n positions forward, filling with false values. If n < 0, elements are shifted backwards. Equivalent to B << -n.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitArray{1}:
true
false
true
false
false
julia> B >> 1
5-element BitArray{1}:
false
true
false
true
false
julia> B >> -1
5-element BitArray{1}:
false
true
false
false
false
source
Base.:>>>Function
>>>(x, n)
Unsigned right bit shift operator, x >>> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling with 0s. For n < 0, this is equivalent to x << -n.
For Unsigned integer types, this is equivalent to >>. For Signed integer types, this is equivalent to signed(unsigned(x) >> n).
Examples
julia> Int8(-14) >>> 2 60 julia> bitstring(Int8(-14)) "11110010" julia> bitstring(Int8(60)) "00111100"
BigInts are treated as if having infinite size, so no filling is required and this is equivalent to >>.
>>>(B::BitVector, n) -> BitVector
Unsigned right bitshift operator, B >>> n. Equivalent to B >> n. See >> for details and examples.
Base.::Function
(:)(start, [step], stop)
Range operator. a:b constructs a range from a to b with a step size of 1 (a UnitRange) , and a:s:b is similar but uses a step size of s (a StepRange).
: is also used in indexing to select whole dimensions.
Base.rangeFunction
range(start; length, stop, step=1)
Given a starting value, construct a range either by length or from start to stop, optionally with a given step (defaults to 1, a UnitRange). One of length or stop is required. If length, stop, and step are all specified, they must agree.
If length and stop are provided and step is not, the step size will be computed automatically such that there are length linearly spaced elements in the range (a LinRange).
If step and stop are provided and length is not, the overall range length will be computed automatically such that the elements are step spaced (a StepRange).
Examples
julia> range(1, length=100) 1:100 julia> range(1, stop=100) 1:100 julia> range(1, step=5, length=100) 1:5:496 julia> range(1, step=5, stop=100) 1:5:96source
Base.OneToType
Base.OneTo(n)
Define an AbstractUnitRange that behaves like 1:n, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
Base.StepRangeLenType
StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S}
StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}
A range r where r[i] produces values of type T (in the second form, T is deduced automatically), parameterized by a reference value, a step, and the length. By default ref is the starting value r[1], but alternatively you can supply it as the value of r[offset] for some other index 1 <= offset <= len. In conjunction with TwicePrecision this can be used to implement ranges that are free of roundoff error.
Base.:==Function
==(x, y)
Generic equality operator. Falls back to ===. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding. For collections, == is generally called recursively on all contents, though other properties (like the shape for arrays) may also be taken into account.
This operator follows IEEE semantics for floating-point numbers: 0.0 == -0.0 and NaN != NaN.
The result is of type Bool, except when one of the operands is missing, in which case missing is returned (three-valued logic). For collections, missing is returned if at least one of the operands contains a missing value and all non-missing values are equal. Use isequal or === to always get a Bool result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
isequal falls back to ==, so new methods of == will be used by the Dict type to compare keys. If your type will be used as a dictionary key, it should therefore also implement hash.
==(x)
Create a function that compares its argument to x using ==, i.e. a function equivalent to y -> y == x.
The returned function is of type Base.Fix2{typeof(==)}, which can be used to implement specialized methods.
==(a::AbstractString, b::AbstractString) -> Bool
Test whether two strings are equal character by character (technically, Unicode code point by code point).
Examples
julia> "abc" == "abc" true julia> "abc" == "αβγ" falsesource
Base.:!=Function
!=(x, y) ≠(x,y)
Not-equals comparison operator. Always gives the opposite answer as ==.
Implementation
New types should generally not implement this, and rely on the fallback definition !=(x,y) = !(x==y) instead.
Examples
julia> 3 != 2 true julia> "foo" ≠ "foo" falsesource
Base.:!==Function
!==(x, y) ≢(x,y)
Always gives the opposite answer as ===.
Examples
julia> a = [1, 2]; b = [1, 2]; julia> a ≢ b true julia> a ≢ a falsesource
Base.:<Function
<(x, y)
Less-than comparison operator. Falls back to isless. Because of the behavior of floating-point NaN values, this operator implements a partial order.
Implementation
New numeric types with a canonical partial order should implement this function for two arguments of the new type. Types with a canonical total order should implement isless instead. (x < y) | (x == y)
Examples
julia> 'a' < 'b' true julia> "abc" < "abd" true julia> 5 < 3 falsesource
Base.:<=Function
<=(x, y) ≤(x,y)
Less-than-or-equals comparison operator. Falls back to (x < y) | (x == y).
Examples
julia> 'a' <= 'b' true julia> 7 ≤ 7 ≤ 9 true julia> "abc" ≤ "abc" true julia> 5 <= 3 falsesource
Base.:>Function
>(x, y)
Greater-than comparison operator. Falls back to y < x.
Implementation
Generally, new types should implement < instead of this function, and rely on the fallback definition >(x, y) = y < x.
Examples
julia> 'a' > 'b' false julia> 7 > 3 > 1 true julia> "abc" > "abd" false julia> 5 > 3 truesource
Base.:>=Function
>=(x, y) ≥(x,y)
Greater-than-or-equals comparison operator. Falls back to y <= x.
Examples
julia> 'a' >= 'b' false julia> 7 ≥ 7 ≥ 3 true julia> "abc" ≥ "abc" true julia> 5 >= 3 truesource
Base.cmpFunction
cmp(x,y)
Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y, respectively. Uses the total order implemented by isless.
Examples
julia> cmp(1, 2)
-1
julia> cmp(2, 1)
1
julia> cmp(2+im, 3-im)
ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})
[...]
sourcecmp(<, x, y)
Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y, respectively. The first argument specifies a less-than comparison function to use.
cmp(a::AbstractString, b::AbstractString) -> Int
Compare two strings. Return 0 if both strings have the same length and the character at each index is the same in both strings. Return -1 if a is a prefix of b, or if a comes before b in alphabetical order. Return 1 if b is a prefix of a, or if b comes before a in alphabetical order (technically, lexicographical order by Unicode code points).
Examples
julia> cmp("abc", "abc")
0
julia> cmp("ab", "abc")
-1
julia> cmp("abc", "ab")
1
julia> cmp("ab", "ac")
-1
julia> cmp("ac", "ab")
1
julia> cmp("α", "a")
1
julia> cmp("b", "β")
-1
source
Base.:~Function
~(x)
Bitwise not.
Examples
julia> ~4 -5 julia> ~10 -11 julia> ~true falsesource
Base.:&Function
&(x, y)
Bitwise and. Implements three-valued logic, returning missing if one operand is missing and the other is true.
Examples
julia> 4 & 10 0 julia> 4 & 12 4 julia> true & missing missing julia> false & missing falsesource
Base.:|Function
|(x, y)
Bitwise or. Implements three-valued logic, returning missing if one operand is missing and the other is false.
Examples
julia> 4 | 10 14 julia> 4 | 1 5 julia> true | missing true julia> false | missing missingsource
Base.xorFunction
xor(x, y) ⊻(x, y)
Bitwise exclusive or of x and y. Implements three-valued logic, returning missing if one of the arguments is missing.
The infix operation a ⊻ b is a synonym for xor(a,b), and ⊻ can be typed by tab-completing \xor or \veebar in the Julia REPL.
Examples
julia> xor(true, false)
true
julia> xor(true, true)
false
julia> xor(true, missing)
missing
julia> false ⊻ false
false
julia> [true; true; false] .⊻ [true; false; false]
3-element BitArray{1}:
false
true
false
source
Base.:!Function
!(x)
Boolean not. Implements three-valued logic, returning missing if x is missing.
Examples
julia> !true
false
julia> !false
true
julia> !missing
missing
julia> .![true false true]
1×3 BitArray{2}:
false true false
source!f::Function
Predicate function negation: when the argument of ! is a function, it returns a function which computes the boolean negation of f.
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε" "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε" julia> filter(isletter, str) "εδxyδfxfyε" julia> filter(!isletter, str) "∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "source
&&Keyword
x && y
Short-circuiting boolean AND.
source
||Keyword
x || y
Short-circuiting boolean OR.
sourceMathematical Functions
Base.isapproxFunction
isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)
Inexact equality comparison: true if norm(x-y) <= max(atol, rtol*max(norm(x), norm(y))). The default atol is zero and the default rtol depends on the types of x and y. The keyword argument nans determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an atol > 0 is not specified, rtol defaults to the square root of eps of the type of x or y, whichever is bigger (least precise). This corresponds to requiring equality of about half of the significand digits. Otherwise, e.g. for integer arguments or if an atol > 0 is supplied, rtol defaults to zero.
x and y may also be arrays of numbers, in which case norm defaults to vecnorm but may be changed by passing a norm::Function keyword argument. (For numbers, norm is the same thing as abs.) When x and y are arrays, if norm(x-y) is not finite (i.e. ±Inf or NaN), the comparison falls back to checking whether all elements of x and y are approximately equal component-wise.
The binary operator ≈ is equivalent to isapprox with the default arguments, and x ≉ y is equivalent to !isapprox(x,y).
Note that x ≈ 0 (i.e., comparing to zero with the default tolerances) is equivalent to x == 0 since the default atol is 0. In such cases, you should either supply an appropriate atol (or use norm(x) ≤ atol) or rearrange your code (e.g. use x ≈ y rather than x - y ≈ 0). It is not possible to pick a nonzero atol automatically because it depends on the overall scaling (the "units") of your problem: for example, in x - y ≈ 0, atol=1e-9 is an absurdly small tolerance if x is the radius of the Earth in meters, but an absurdly large tolerance if x is the radius of a Hydrogen atom in meters.
Examples
julia> 0.1 ≈ (0.1 - 1e-10) true julia> isapprox(10, 11; atol = 2) true julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) true julia> 1e-10 ≈ 0 false julia> isapprox(1e-10, 0, atol=1e-8) truesource
Base.sinMethod
sin(x)
Compute sine of x, where x is in radians.
Base.cosMethod
cos(x)
Compute cosine of x, where x is in radians.
Base.Math.sincosMethod
sincos(x)
Simultaneously compute the sine and cosine of x, where the x is in radians.
Base.tanMethod
tan(x)
Compute tangent of x, where x is in radians.
Base.Math.sindFunction
sind(x)
Compute sine of x, where x is in degrees.
Base.Math.cosdFunction
cosd(x)
Compute cosine of x, where x is in degrees.
Base.Math.tandFunction
tand(x)
Compute tangent of x, where x is in degrees.
Base.Math.sinpiFunction
sinpi(x)
Compute $\sin(\pi x)$ more accurately than sin(pi*x), especially for large x.
Base.Math.cospiFunction
cospi(x)
Compute $\cos(\pi x)$ more accurately than cos(pi*x), especially for large x.
Base.sinhMethod
sinh(x)
Compute hyperbolic sine of x.
Base.coshMethod
cosh(x)
Compute hyperbolic cosine of x.
Base.tanhMethod
tanh(x)
Compute hyperbolic tangent of x.
Base.asinMethod
asin(x)
Compute the inverse sine of x, where the output is in radians.
Base.acosMethod
acos(x)
Compute the inverse cosine of x, where the output is in radians
Base.atanMethod
atan(y) atan(y, x)
Compute the inverse tangent of y or y/x, respectively.
For one argument, this is the angle in radians between the positive x-axis and the point (1, y), returning a value in the interval $[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positive x-axis and the point (x, y), returning a value in the interval $[-\pi, \pi]$. This corresponds to a standard atan2 function.
Base.Math.asindFunction
asind(x)
Compute the inverse sine of x, where the output is in degrees.
Base.Math.acosdFunction
acosd(x)
Compute the inverse cosine of x, where the output is in degrees.
Base.Math.atandFunction
atand(y) atand(y,x)
Compute the inverse tangent of y or y/x, respectively, where the output is in degrees.
Base.Math.secMethod
sec(x)
Compute the secant of x, where x is in radians.
Base.Math.cscMethod
csc(x)
Compute the cosecant of x, where x is in radians.
Base.Math.cotMethod
cot(x)
Compute the cotangent of x, where x is in radians.
Base.Math.secdFunction
secd(x)
Compute the secant of x, where x is in degrees.
Base.Math.cscdFunction
cscd(x)
Compute the cosecant of x, where x is in degrees.
Base.Math.cotdFunction
cotd(x)
Compute the cotangent of x, where x is in degrees.
Base.Math.asecMethod
asec(x)
Compute the inverse secant of x, where the output is in radians.
Base.Math.acscMethod
acsc(x)
Compute the inverse cosecant of x, where the output is in radians.
Base.Math.acotMethod
acot(x)
Compute the inverse cotangent of x, where the output is in radians.
Base.Math.asecdFunction
asecd(x)
Compute the inverse secant of x, where the output is in degrees.
Base.Math.acscdFunction
acscd(x)
Compute the inverse cosecant of x, where the output is in degrees.
Base.Math.acotdFunction
acotd(x)
Compute the inverse cotangent of x, where the output is in degrees.
Base.Math.sechMethod
sech(x)
Compute the hyperbolic secant of x.
Base.Math.cschMethod
csch(x)
Compute the hyperbolic cosecant of x.
Base.Math.cothMethod
coth(x)
Compute the hyperbolic cotangent of x.
Base.asinhMethod
asinh(x)
Compute the inverse hyperbolic sine of x.
Base.acoshMethod
acosh(x)
Compute the inverse hyperbolic cosine of x.
Base.atanhMethod
atanh(x)
Compute the inverse hyperbolic tangent of x.
Base.Math.asechMethod
asech(x)
Compute the inverse hyperbolic secant of x.
Base.Math.acschMethod
acsch(x)
Compute the inverse hyperbolic cosecant of x.
Base.Math.acothMethod
acoth(x)
Compute the inverse hyperbolic cotangent of x.
Base.Math.sincFunction
sinc(x)
Compute $\sin(\pi x) / (\pi x)$ if $x \neq 0$, and $1$ if $x = 0$.
source
Base.Math.coscFunction
cosc(x)
Compute $\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if $x \neq 0$, and $0$ if $x = 0$. This is the derivative of sinc(x).
Base.Math.deg2radFunction
deg2rad(x)
Convert x from degrees to radians.
Examples
julia> deg2rad(90) 1.5707963267948966source
Base.Math.rad2degFunction
rad2deg(x)
Convert x from radians to degrees.
Examples
julia> rad2deg(pi) 180.0source
Base.Math.hypotFunction
hypot(x, y)
Compute the hypotenuse $\sqrt{x^2+y^2}$ avoiding overflow and underflow.
Examples
julia> a = 10^10; julia> hypot(a, a) 1.4142135623730951e10 julia> √(a^2 + a^2) # a^2 overflows ERROR: DomainError with -2.914184810805068e18: sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)). Stacktrace: [...]source
hypot(x...)
Compute the hypotenuse $\sqrt{\sum x_i^2}$ avoiding overflow and underflow.
source
Base.logMethod
log(x)
Compute the natural logarithm of x. Throws DomainError for negative Real arguments. Use complex negative arguments to obtain complex results.
Examples
julia> log(2) 0.6931471805599453 julia> log(-3) ERROR: DomainError with -3.0: log will only return a complex result if called with a complex argument. Try log(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...]source
Base.logMethod
log(b,x)
Compute the base b logarithm of x. Throws DomainError for negative Real arguments.
Examples
julia> log(4,8) 1.5 julia> log(4,2) 0.5 julia> log(-2, 3) ERROR: DomainError with -2.0: log will only return a complex result if called with a complex argument. Try log(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...] julia> log(2, -3) ERROR: DomainError with -3.0: log will only return a complex result if called with a complex argument. Try log(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...]
Base.log2Function
log2(x)
Compute the logarithm of x to base 2. Throws DomainError for negative Real arguments.
Examples
julia> log2(4) 2.0 julia> log2(10) 3.321928094887362 julia> log2(-2) ERROR: DomainError with -2.0: NaN result for non-NaN input. Stacktrace: [1] nan_dom_err at ./math.jl:325 [inlined] [...]source
Base.log10Function
log10(x)
Compute the logarithm of x to base 10. Throws DomainError for negative Real arguments.
Examples
julia> log10(100) 2.0 julia> log10(2) 0.3010299956639812 julia> log10(-2) ERROR: DomainError with -2.0: NaN result for non-NaN input. Stacktrace: [1] nan_dom_err at ./math.jl:325 [inlined] [...]source
Base.log1pFunction
log1p(x)
Accurate natural logarithm of 1+x. Throws DomainError for Real arguments less than -1.
Examples
julia> log1p(-0.5) -0.6931471805599453 julia> log1p(0) 0.0 julia> log1p(-2) ERROR: DomainError with -2.0: log1p will only return a complex result if called with a complex argument. Try log1p(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...]source
Base.Math.frexpFunction
frexp(val)
Return (x,exp) such that x has a magnitude in the interval $[1/2, 1)$ or 0, and val is equal to $x \times 2^{exp}$.
Base.expMethod
exp(x)
Compute the natural base exponential of x, in other words $e^x$.
Examples
julia> exp(1.0) 2.718281828459045source
Base.exp2Function
exp2(x)
Compute the base 2 exponential of x, in other words $2^x$.
Examples
julia> exp2(5) 32.0source
Base.exp10Function
exp10(x)
Compute the base 10 exponential of x, in other words $10^x$.
Examples
julia> exp10(2) 100.0source
exp10(x)
Compute $10^x$.
Examples
julia> exp10(2) 100.0 julia> exp10(0.2) 1.5848931924611136source
Base.Math.ldexpFunction
ldexp(x, n)
Compute $x \times 2^n$.
Examples
julia> ldexp(5., 2) 20.0source
Base.Math.modfFunction
modf(x)
Return a tuple (fpart, ipart) of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Examples
julia> modf(3.5) (0.5, 3.0) julia> modf(-3.5) (-0.5, -3.0)source
Base.expm1Function
expm1(x)
Accurately compute $e^x-1$.
source
Base.roundMethod
round([T,] x, [r::RoundingMode]) round(x, [r::RoundingMode]; digits::Integer=0, base = 10) round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)
Rounds the number x.
Without keyword arguments, x is rounded to an integer value, returning a value of type T, or of the same type of x if no T is provided. An InexactError will be thrown if the value is not representable by T, similar to convert.
If the digits keyword argument is provided, it rounds to the specified number of digits after the decimal place (or before if negative), in base base.
If the sigdigits keyword argument is provided, it rounds to the specified number of significant digits, in base base.
The RoundingMode r controls the direction of the rounding; the default is RoundNearest, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. Note that round may give incorrect results if the global rounding mode is changed (see rounding).
Examples
julia> round(1.7) 2.0 julia> round(Int, 1.7) 2 julia> round(1.5) 2.0 julia> round(2.5) 2.0 julia> round(pi; digits=2) 3.14 julia> round(pi; digits=3, base=2) 3.125 julia> round(123.456; sigdigits=2) 120.0 julia> round(357.913; sigdigits=4, base=2) 352.0
Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, the Float64 value represented by 1.15 is actually less than 1.15, yet will be rounded to 1.2.
Examples
julia> x = 1.15 1.15 julia> @sprintf "%.20f" x "1.14999999999999991118" julia> x < 115//100 true julia> round(x, digits=1) 1.2
Extensions
To extend round to new numeric types, it is typically sufficient to define Base.round(x::NewType, r::RoundingMode).
Base.Rounding.RoundingModeType
RoundingMode
A type used for controlling the rounding mode of floating point operations (via rounding/setrounding functions), or as optional arguments for rounding to the nearest integer (via the round function).
Currently supported rounding modes are:
-
RoundNearest(default) RoundNearestTiesAwayRoundNearestTiesUpRoundToZero-
RoundFromZero(BigFloatonly) RoundUpRoundDown
Base.Rounding.RoundNearestConstant
RoundNearest
The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
source
Base.Rounding.RoundNearestTiesAwayConstant
RoundNearestTiesAway
Rounds to nearest integer, with ties rounded away from zero (C/C++ round behaviour).
Base.Rounding.RoundNearestTiesUpConstant
RoundNearestTiesUp
Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round behaviour).
Base.Rounding.RoundToZeroConstant
RoundToZero
round using this rounding mode is an alias for trunc.
Base.Rounding.RoundFromZeroConstant
RoundFromZero
Rounds away from zero. This rounding mode may only be used with T == BigFloat inputs to round.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero)
1.06
source
Base.Rounding.RoundUpConstant
RoundUp
round using this rounding mode is an alias for ceil.
Base.Rounding.RoundDownConstant
RoundDown
round using this rounding mode is an alias for floor.
Base.roundMethod
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]) round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10) round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)
Return the nearest integral value of the same type as the complex-valued z to z, breaking ties using the specified RoundingModes. The first RoundingMode is used for rounding the real components while the second is used for rounding the imaginary components.
Example
julia> round(3.14 + 4.5im) 3.0 + 4.0imsource
Base.ceilFunction
ceil([T,] x) ceil(x; digits::Integer= [, base = 10]) ceil(x; sigdigits::Integer= [, base = 10])
ceil(x) returns the nearest integral value of the same type as x that is greater than or equal to x.
ceil(T, x) converts the result to type T, throwing an InexactError if the value is not representable.
digits, sigdigits and base work as for round.
Base.floorFunction
floor([T,] x) floor(x; digits::Integer= [, base = 10]) floor(x; sigdigits::Integer= [, base = 10])
floor(x) returns the nearest integral value of the same type as x that is less than or equal to x.
floor(T, x) converts the result to type T, throwing an InexactError if the value is not representable.
digits, sigdigits and base work as for round.
Base.truncFunction
trunc([T,] x) trunc(x; digits::Integer= [, base = 10]) trunc(x; sigdigits::Integer= [, base = 10])
trunc(x) returns the nearest integral value of the same type as x whose absolute value is less than or equal to x.
trunc(T, x) converts the result to type T, throwing an InexactError if the value is not representable.
digits, sigdigits and base work as for round.
Base.unsafe_truncFunction
unsafe_trunc(T, x)
Return the nearest integral value of type T whose absolute value is less than or equal to x. If the value is not representable by T, an arbitrary value will be returned.
Base.minFunction
min(x, y, ...)
Return the minimum of the arguments. See also the minimum function to take the minimum element from a collection.
Examples
julia> min(2, 5, 1) 1source
Base.maxFunction
max(x, y, ...)
Return the maximum of the arguments. See also the maximum function to take the maximum element from a collection.
Examples
julia> max(2, 5, 1) 5source
Base.minmaxFunction
minmax(x, y)
Return (min(x,y), max(x,y)). See also: extrema that returns (minimum(x), maximum(x)).
Examples
julia> minmax('c','b')
('b', 'c')
source
Base.Math.clampFunction
clamp(x, lo, hi)
Return x if lo <= x <= hi. If x > hi, return hi. If x < lo, return lo. Arguments are promoted to a common type.
Examples
julia> clamp.([pi, 1.0, big(10.)], 2., 9.)
3-element Array{BigFloat,1}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.0
9.0
julia> clamp.([11,8,5],10,6) # an example where lo > hi
3-element Array{Int64,1}:
6
6
10
source
Base.Math.clamp!Function
clamp!(array::AbstractArray, lo, hi)
Restrict values in array to the specified range, in-place. See also clamp.
Base.absFunction
abs(x)
The absolute value of x.
When abs is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when abs is applied to the minimum representable value of a signed integer. That is, when x == typemin(typeof(x)), abs(x) == x < 0, not -x as might be expected.
Examples
julia> abs(-3) 3 julia> abs(1 + im) 1.4142135623730951 julia> abs(typemin(Int64)) -9223372036854775808source
Base.Checked.checked_absFunction
Base.checked_abs(x)
Calculates abs(x), checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int) cannot represent abs(typemin(Int)), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_negFunction
Base.checked_neg(x)
Calculates -x, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int) cannot represent -typemin(Int), thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_addFunction
Base.checked_add(x, y)
Calculates x+y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_subFunction
Base.checked_sub(x, y)
Calculates x-y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_mulFunction
Base.checked_mul(x, y)
Calculates x*y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_divFunction
Base.checked_div(x, y)
Calculates div(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_remFunction
Base.checked_rem(x, y)
Calculates x%y, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_fldFunction
Base.checked_fld(x, y)
Calculates fld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_modFunction
Base.checked_mod(x, y)
Calculates mod(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_cldFunction
Base.checked_cld(x, y)
Calculates cld(x,y), checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.add_with_overflowFunction
Base.add_with_overflow(x, y) -> (r, f)
Calculates r = x+y, with the flag f indicating whether overflow has occurred.
Base.Checked.sub_with_overflowFunction
Base.sub_with_overflow(x, y) -> (r, f)
Calculates r = x-y, with the flag f indicating whether overflow has occurred.
Base.Checked.mul_with_overflowFunction
Base.mul_with_overflow(x, y) -> (r, f)
Calculates r = x*y, with the flag f indicating whether overflow has occurred.
Base.abs2Function
abs2(x)
Squared absolute value of x.
Examples
julia> abs2(-3) 9source
Base.copysignFunction
copysign(x, y) -> z
Return z which has the magnitude of x and the same sign as y.
Examples
julia> copysign(1, -2) -1 julia> copysign(-1, 2) 1source
Base.signFunction
sign(x)
Return zero if x==0 and $x/|x|$ otherwise (i.e., ±1 for real x).
Base.signbitFunction
signbit(x)
Returns true if the value of the sign of x is negative, otherwise false.
Examples
julia> signbit(-4) true julia> signbit(5) false julia> signbit(5.5) false julia> signbit(-4.1) truesource
Base.flipsignFunction
flipsign(x, y)
Return x with its sign flipped if y is negative. For example abs(x) = flipsign(x,x).
Examples
julia> flipsign(5, 3) 5 julia> flipsign(5, -3) -5source
Base.sqrtMethod
sqrt(x)
Return $\sqrt{x}$. Throws DomainError for negative Real arguments. Use complex negative arguments instead. The prefix operator √ is equivalent to sqrt.
Examples
julia> sqrt(big(81)) 9.0 julia> sqrt(big(-81)) ERROR: DomainError with -8.1e+01: NaN result for non-NaN input. Stacktrace: [1] sqrt(::BigFloat) at ./mpfr.jl:501 [...] julia> sqrt(big(complex(-81))) 0.0 + 9.0imsource
Base.isqrtFunction
isqrt(n::Integer)
Integer square root: the largest integer m such that m*m <= n.
julia> isqrt(5) 2source
Base.Math.cbrtFunction
cbrt(x::Real)
Return the cube root of x, i.e. $x^{1/3}$. Negative values are accepted (returning the negative real root when $x < 0$).
The prefix operator ∛ is equivalent to cbrt.
Examples
julia> cbrt(big(27)) 3.0 julia> cbrt(big(-27)) -3.0source
Base.realMethod
real(z)
Return the real part of the complex number z.
Examples
julia> real(1 + 3im) 1source
Base.imagFunction
imag(z)
Return the imaginary part of the complex number z.
Examples
julia> imag(1 + 3im) 3source
Base.reimFunction
reim(z)
Return both the real and imaginary parts of the complex number z.
Examples
julia> reim(1 + 3im) (1, 3)source
Base.conjFunction
conj(z)
Compute the complex conjugate of a complex number z.
Examples
julia> conj(1 + 3im) 1 - 3imsource
Base.angleFunction
angle(z)
Compute the phase angle in radians of a complex number z.
Examples
julia> rad2deg(angle(1 + im)) 45.0 julia> rad2deg(angle(1 - im)) -45.0 julia> rad2deg(angle(-1 - im)) -135.0source
Base.cisFunction
cis(z)
Return $\exp(iz)$.
Examples
julia> cis(π) ≈ -1 truesource
Base.binomialFunction
binomial(n::Integer, k::Integer)
The binomial coefficient $\binom{n}{k}$, being the coefficient of the $k$th term in the polynomial expansion of $(1+x)^n$.
If $n$ is non-negative, then it is the number of ways to choose k out of n items:
where $n!$ is the factorial function.
If $n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]Examples
julia> binomial(5, 3) 10 julia> factorial(5) ÷ (factorial(5-3) * factorial(3)) 10 julia> binomial(-5, 3) -35
See also
External links
- Binomial coeffient on Wikipedia.
Base.factorialFunction
factorial(n::Integer)
Factorial of n. If n is an Integer, the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow if n is not small, but you can use factorial(big(n)) to compute the result exactly in arbitrary precision.
Examples
julia> factorial(6) 720 julia> factorial(21) ERROR: OverflowError: 21 is too large to look up in the table Stacktrace: [...] julia> factorial(big(21)) 51090942171709440000
See also
External links
- Factorial on Wikipedia.
Base.gcdFunction
gcd(x,y)
Greatest common (positive) divisor (or zero if x and y are both zero).
Examples
julia> gcd(6,9) 3 julia> gcd(6,-9) 3source
Base.lcmFunction
lcm(x,y)
Least common (non-negative) multiple.
Examples
julia> lcm(2,3) 6 julia> lcm(-2,3) 6source
Base.gcdxFunction
gcdx(x,y)
Computes the greatest common (positive) divisor of x and y and their Bézout coefficients, i.e. the integer coefficients u and v that satisfy $ux+vy = d = gcd(x,y)$. $gcdx(x,y)$ returns $(d,u,v)$.
Examples
julia> gcdx(12, 42) (6, -3, 1) julia> gcdx(240, 46) (2, -9, 47)
Bézout coefficients are not uniquely defined. gcdx returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficients u and v are minimal in the sense that $|u| < |y/d|$ and $|v| < |x/d|$. Furthermore, the signs of u and v are chosen so that d is positive. For unsigned integers, the coefficients u and v might be near their typemax, and the identity then holds only via the unsigned integers' modulo arithmetic.
Base.ispow2Function
ispow2(n::Integer) -> Bool
Test whether n is a power of two.
Examples
julia> ispow2(4) true julia> ispow2(5) falsesource
Base.nextpowFunction
nextpow(a, x)
The smallest a^n not less than x, where n is a non-negative integer. a must be greater than 1, and x must be greater than 0.
Examples
julia> nextpow(2, 7) 8 julia> nextpow(2, 9) 16 julia> nextpow(5, 20) 25 julia> nextpow(4, 16) 16
See also prevpow.
Base.prevpowFunction
prevpow(a, x)
The largest a^n not greater than x, where n is a non-negative integer. a must be greater than 1, and x must not be less than 1.
Examples
julia> prevpow(2, 7) 4 julia> prevpow(2, 9) 8 julia> prevpow(5, 20) 5 julia> prevpow(4, 16) 16
See also nextpow.
Base.nextprodFunction
nextprod([k_1, k_2,...], n)
Next integer greater than or equal to n that can be written as $\prod k_i^{p_i}$ for integers $p_1$, $p_2$, etc.
Examples
julia> nextprod([2, 3], 105) 108 julia> 2^2 * 3^3 108source
Base.invmodFunction
invmod(x,m)
Take the inverse of x modulo m: y such that $x y = 1 \pmod m$, with $div(x,y) = 0$. This is undefined for $m = 0$, or if $gcd(x,m) \neq 1$.
Examples
julia> invmod(2,5) 3 julia> invmod(2,3) 2 julia> invmod(5,6) 5source
Base.powermodFunction
powermod(x::Integer, p::Integer, m)
Compute $x^p \pmod m$.
Examples
julia> powermod(2, 6, 5) 4 julia> mod(2^6, 5) 4 julia> powermod(5, 2, 20) 5 julia> powermod(5, 2, 19) 6 julia> powermod(5, 3, 19) 11source
Base.ndigitsFunction
ndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integer n written in base base (base must not be in [-1, 0, 1]), optionally padded with zeros to a specified size (the result will never be less than pad).
Examples
julia> ndigits(12345) 5 julia> ndigits(1022, base=16) 3 julia> string(1022, base=16) "3fe" julia> ndigits(123, pad=5) 5source
Base.widemulFunction
widemul(x, y)
Multiply x and y, giving the result as a larger type.
Examples
julia> widemul(Float32(3.), 4.) 1.2e+01source
Base.Math.@evalpolyMacro
@evalpoly(z, c...)
Evaluate the polynomial $\sum_k c[k] z^{k-1}$ for the coefficients c[1], c[2], ...; that is, the coefficients are given in ascending order by power of z. This macro expands to efficient inline code that uses either Horner's method or, for complex z, a more efficient Goertzel-like algorithm.
Examples
julia> @evalpoly(3, 1, 0, 1) 10 julia> @evalpoly(2, 1, 0, 1) 5 julia> @evalpoly(2, 1, 1, 1) 7source
Base.FastMath.@fastmathMacro
@fastmath expr
Execute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets the LLVM Fast-Math flags, and corresponds to the -ffast-math option in clang. See the notes on performance annotations for more details.
Examples
julia> @fastmath 1+2 3 julia> @fastmath(sin(3)) 0.1411200080598672source
© 2009–2019 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/v1.0.4/base/math/