Arrays
Constructors and Types
Core.AbstractArray
Type
AbstractArray{T,N}
Supertype for N
-dimensional arrays (or array-like types) with elements of type T
. Array
and other types are subtypes of this. See the manual section on the AbstractArray
interface.
Base.AbstractVector
Type
AbstractVector{T}
Supertype for one-dimensional arrays (or array-like types) with elements of type T
. Alias for AbstractArray{T,1}
.
Base.AbstractMatrix
Type
AbstractMatrix{T}
Supertype for two-dimensional arrays (or array-like types) with elements of type T
. Alias for AbstractArray{T,2}
.
Base.AbstractVecOrMat
Constant
AbstractVecOrMat{T}
Union type of AbstractVector{T}
and AbstractMatrix{T}
.
Core.Array
Type
Array{T,N} <: AbstractArray{T,N}
N
-dimensional dense array with elements of type T
.
Core.Array
Method
Array{T}(undef, dims) Array{T,N}(undef, dims)
Construct an uninitialized N
-dimensional Array
containing elements of type T
. N
can either be supplied explicitly, as in Array{T,N}(undef, dims)
, or be determined by the length or number of dims
. dims
may be a tuple or a series of integer arguments corresponding to the lengths in each dimension. If the rank N
is supplied explicitly, then it must match the length or number of dims
. See undef
.
Examples
julia> A = Array{Float64,2}(undef, 2, 3) # N given explicitly 2×3 Array{Float64,2}: 6.90198e-310 6.90198e-310 6.90198e-310 6.90198e-310 6.90198e-310 0.0 julia> B = Array{Float64}(undef, 2) # N determined by the input 2-element Array{Float64,1}: 1.87103e-320 0.0source
Core.Array
Method
Array{T}(nothing, dims) Array{T,N}(nothing, dims)
Construct an N
-dimensional Array
containing elements of type T
, initialized with nothing
entries. Element type T
must be able to hold these values, i.e. Nothing <: T
.
Examples
julia> Array{Union{Nothing, String}}(nothing, 2) 2-element Array{Union{Nothing, String},1}: nothing nothing julia> Array{Union{Nothing, Int}}(nothing, 2, 3) 2×3 Array{Union{Nothing, Int64},2}: nothing nothing nothing nothing nothing nothingsource
Core.Array
Method
Array{T}(missing, dims) Array{T,N}(missing, dims)
Construct an N
-dimensional Array
containing elements of type T
, initialized with missing
entries. Element type T
must be able to hold these values, i.e. Missing <: T
.
Examples
julia> Array{Union{Missing, String}}(missing, 2) 2-element Array{Union{Missing, String},1}: missing missing julia> Array{Union{Missing, Int}}(missing, 2, 3) 2×3 Array{Union{Missing, Int64},2}: missing missing missing missing missing missingsource
Core.UndefInitializer
Type
UndefInitializer
Singleton type used in array initialization, indicating the array-constructor-caller would like an uninitialized array. See also undef
, an alias for UndefInitializer()
.
Examples
julia> Array{Float64,1}(UndefInitializer(), 3) 3-element Array{Float64,1}: 2.2752528595e-314 2.202942107e-314 2.275252907e-314source
Core.undef
Constant
undef
Alias for UndefInitializer()
, which constructs an instance of the singleton type UndefInitializer
, used in array initialization to indicate the array-constructor-caller would like an uninitialized array.
Examples
julia> Array{Float64,1}(undef, 3) 3-element Array{Float64,1}: 2.2752528595e-314 2.202942107e-314 2.275252907e-314source
Base.Vector
Type
Vector{T} <: AbstractVector{T}
One-dimensional dense array with elements of type T
, often used to represent a mathematical vector. Alias for Array{T,1}
.
Base.Vector
Method
Vector{T}(undef, n)
Construct an uninitialized Vector{T}
of length n
. See undef
.
Examples
julia> Vector{Float64}(undef, 3) 3-element Array{Float64,1}: 6.90966e-310 6.90966e-310 6.90966e-310source
Base.Vector
Method
Vector{T}(nothing, m)
Construct a Vector{T}
of length m
, initialized with nothing
entries. Element type T
must be able to hold these values, i.e. Nothing <: T
.
Examples
julia> Vector{Union{Nothing, String}}(nothing, 2) 2-element Array{Union{Nothing, String},1}: nothing nothingsource
Base.Vector
Method
Vector{T}(missing, m)
Construct a Vector{T}
of length m
, initialized with missing
entries. Element type T
must be able to hold these values, i.e. Missing <: T
.
Examples
julia> Vector{Union{Missing, String}}(missing, 2) 2-element Array{Union{Missing, String},1}: missing missingsource
Base.Matrix
Type
Matrix{T} <: AbstractMatrix{T}
Two-dimensional dense array with elements of type T
, often used to represent a mathematical matrix. Alias for Array{T,2}
.
Base.Matrix
Method
Matrix{T}(undef, m, n)
Construct an uninitialized Matrix{T}
of size m
×n
. See undef
.
Examples
julia> Matrix{Float64}(undef, 2, 3) 2×3 Array{Float64,2}: 6.93517e-310 6.93517e-310 6.93517e-310 6.93517e-310 6.93517e-310 1.29396e-320source
Base.Matrix
Method
Matrix{T}(nothing, m, n)
Construct a Matrix{T}
of size m
×n
, initialized with nothing
entries. Element type T
must be able to hold these values, i.e. Nothing <: T
.
Examples
julia> Matrix{Union{Nothing, String}}(nothing, 2, 3) 2×3 Array{Union{Nothing, String},2}: nothing nothing nothing nothing nothing nothingsource
Base.Matrix
Method
Matrix{T}(missing, m, n)
Construct a Matrix{T}
of size m
×n
, initialized with missing
entries. Element type T
must be able to hold these values, i.e. Missing <: T
.
Examples
julia> Matrix{Union{Missing, String}}(missing, 2, 3) 2×3 Array{Union{Missing, String},2}: missing missing missing missing missing missingsource
Base.VecOrMat
Constant
VecOrMat{T}
Union type of Vector{T}
and Matrix{T}
.
Core.DenseArray
Type
DenseArray{T, N} <: AbstractArray{T,N}
N
-dimensional dense array with elements of type T
. The elements of a dense array are stored contiguously in memory.
Base.DenseVector
Type
DenseVector{T}
One-dimensional DenseArray
with elements of type T
. Alias for DenseArray{T,1}
.
Base.DenseMatrix
Type
DenseMatrix{T}
Two-dimensional DenseArray
with elements of type T
. Alias for DenseArray{T,2}
.
Base.DenseVecOrMat
Constant
DenseVecOrMat{T}
Union type of DenseVector{T}
and DenseMatrix{T}
.
Base.StridedArray
Constant
StridedArray{T, N}
An N
dimensional strided array with elements of type T
. These arrays follow the strided array interface. If A
is a StridedArray
, then its elements are stored in memory with offsets, which may vary between dimensions but are constant within a dimension. For example, A
could have stride 2 in dimension 1, and stride 3 in dimension 2. Incrementing A
along dimension d
jumps in memory by [strides(A, d)
] slots. Strided arrays are particularly important and useful because they can sometimes be passed directly as pointers to foreign language libraries like BLAS.
Base.StridedVector
Constant
StridedVector{T}
One dimensional StridedArray
with elements of type T
.
Base.StridedMatrix
Constant
StridedMatrix{T}
Two dimensional StridedArray
with elements of type T
.
Base.StridedVecOrMat
Constant
StridedVecOrMat{T}
Union type of StridedVector
and StridedMatrix
with elements of type T
.
Base.getindex
Method
getindex(type[, elements...])
Construct a 1-d array of the specified type. This is usually called with the syntax Type[]
. Element values can be specified using Type[a,b,c,...]
.
Examples
julia> Int8[1, 2, 3] 3-element Array{Int8,1}: 1 2 3 julia> getindex(Int8, 1, 2, 3) 3-element Array{Int8,1}: 1 2 3source
Base.zeros
Function
zeros([T=Float64,] dims...)
Create an Array
, with element type T
, of all zeros with size specified by dims
. See also fill
, ones
.
Examples
julia> zeros(1) 1-element Array{Float64,1}: 0.0 julia> zeros(Int8, 2, 3) 2×3 Array{Int8,2}: 0 0 0 0 0 0source
Base.ones
Function
ones([T=Float64,] dims...)
Create an Array
, with element type T
, of all ones with size specified by dims
. See also: fill
, zeros
.
Examples
julia> ones(1,2) 1×2 Array{Float64,2}: 1.0 1.0 julia> ones(ComplexF64, 2, 3) 2×3 Array{Complex{Float64},2}: 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0im 1.0+0.0imsource
Base.BitArray
Type
BitArray{N} <: DenseArray{Bool, N}
Space-efficient N
-dimensional boolean array, which stores one bit per boolean value.
Base.BitArray
Method
BitArray(undef, dims::Integer...) BitArray{N}(undef, dims::NTuple{N,Int})
Construct an undef BitArray
with the given dimensions. Behaves identically to the Array
constructor. See undef
.
Examples
julia> BitArray(undef, 2, 2) 2×2 BitArray{2}: false false false true julia> BitArray(undef, (3, 1)) 3×1 BitArray{2}: false true falsesource
Base.BitArray
Method
BitArray(itr)
Construct a BitArray
generated by the given iterable object. The shape is inferred from the itr
object.
Examples
julia> BitArray([1 0; 0 1]) 2×2 BitArray{2}: true false false true julia> BitArray(x+y == 3 for x = 1:2, y = 1:3) 2×3 BitArray{2}: false true false true false false julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3) 6-element BitArray{1}: false true false true false falsesource
Base.trues
Function
trues(dims)
Create a BitArray
with all values set to true
.
Examples
julia> trues(2,3) 2×3 BitArray{2}: true true true true true truesource
Base.falses
Function
falses(dims)
Create a BitArray
with all values set to false
.
Examples
julia> falses(2,3) 2×3 BitArray{2}: false false false false false falsesource
Base.fill
Function
fill(x, dims)
Create an array filled with the value x
. For example, fill(1.0, (5,5))
returns a 5×5 array of floats, with each element initialized to 1.0
.
Examples
julia> fill(1.0, (5,5)) 5×5 Array{Float64,2}: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
If x
is an object reference, all elements will refer to the same object. fill(Foo(), dims)
will return an array filled with the result of evaluating Foo()
once.
Base.fill!
Function
fill!(A, x)
Fill array A
with the value x
. If x
is an object reference, all elements will refer to the same object. fill!(A, Foo())
will return A
filled with the result of evaluating Foo()
once.
Examples
julia> A = zeros(2,3) 2×3 Array{Float64,2}: 0.0 0.0 0.0 0.0 0.0 0.0 julia> fill!(A, 2.) 2×3 Array{Float64,2}: 2.0 2.0 2.0 2.0 2.0 2.0 julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(undef, 3), a); a[1] = 2; A 3-element Array{Array{Int64,1},1}: [2, 1, 1] [2, 1, 1] [2, 1, 1] julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(undef, 3), f()) 3-element Array{Int64,1}: 1 1 1source
Base.similar
Function
similar(array, [element_type=eltype(array)], [dims=size(array)])
Create an uninitialized mutable array with the given element type and size, based upon the given source array. The second and third arguments are both optional, defaulting to the given array's eltype
and size
. The dimensions may be specified either as a single tuple argument or as a series of integer arguments.
Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given element type and dimensionality. If they do not specialize this method, the default is an Array{element_type}(undef, dims...)
.
For example, similar(1:10, 1, 4)
returns an uninitialized Array{Int,2}
since ranges are neither mutable nor support 2 dimensions:
julia> similar(1:10, 1, 4) 1×4 Array{Int64,2}: 4419743872 4374413872 4419743888 0
Conversely, similar(trues(10,10), 2)
returns an uninitialized BitVector
with two elements since BitArray
s are both mutable and can support 1-dimensional arrays:
julia> similar(trues(10,10), 2) 2-element BitArray{1}: false false
Since BitArray
s can only store elements of type Bool
, however, if you request a different element type it will create a regular Array
instead:
julia> similar(falses(10), Float64, 2, 4) 2×4 Array{Float64,2}: 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314source
similar(storagetype, axes)
Create an uninitialized mutable array analogous to that specified by storagetype
, but with axes
specified by the last argument. storagetype
might be a type or a function.
Examples:
similar(Array{Int}, axes(A))
creates an array that "acts like" an Array{Int}
(and might indeed be backed by one), but which is indexed identically to A
. If A
has conventional indexing, this will be identical to Array{Int}(undef, size(A))
, but if A
has unconventional indexing then the indices of the result will match A
.
similar(BitArray, (axes(A, 2),))
would create a 1-dimensional logical array whose indices match those of the columns of A
.
Basic functions
Base.ndims
Function
ndims(A::AbstractArray) -> Integer
Return the number of dimensions of A
.
Examples
julia> A = fill(1, (3,4,5)); julia> ndims(A) 3source
Base.size
Function
size(A::AbstractArray, [dim])
Return a tuple containing the dimensions of A
. Optionally you can specify a dimension to just get the length of that dimension.
Note that size
may not be defined for arrays with non-standard indices, in which case axes
may be useful. See the manual chapter on arrays with custom indices.
Examples
julia> A = fill(1, (2,3,4)); julia> size(A) (2, 3, 4) julia> size(A, 2) 3source
Base.axes
Method
axes(A)
Return the tuple of valid indices for array A
.
Examples
julia> A = fill(1, (5,6,7)); julia> axes(A) (Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))source
Base.axes
Method
axes(A, d)
Return the valid range of indices for array A
along dimension d
.
See also size
, and the manual chapter on arrays with custom indices.
Examples
julia> A = fill(1, (5,6,7)); julia> axes(A, 2) Base.OneTo(6)source
Base.length
Method
length(A::AbstractArray)
Return the number of elements in the array, defaults to prod(size(A))
.
Examples
julia> length([1, 2, 3, 4]) 4 julia> length([1 2; 3 4]) 4source
Base.eachindex
Function
eachindex(A...)
Create an iterable object for visiting each index of an AbstractArray
A
in an efficient manner. For array types that have opted into fast linear indexing (like Array
), this is simply the range 1:length(A)
. For other array types, return a specialized Cartesian range to efficiently index into the array with indices specified for every dimension. For other iterables, including strings and dictionaries, return an iterator object supporting arbitrary index types (e.g. unevenly spaced or non-integer indices).
If you supply more than one AbstractArray
argument, eachindex
will create an iterable object that is fast for all arguments (a UnitRange
if all inputs have fast linear indexing, a CartesianIndices
otherwise). If the arrays have different sizes and/or dimensionalities, eachindex
will return an iterable that spans the largest range along each dimension.
Examples
julia> A = [1 2; 3 4]; julia> for i in eachindex(A) # linear indexing println(i) end 1 2 3 4 julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing println(i) end CartesianIndex(1, 1) CartesianIndex(2, 1)source
Base.IndexStyle
Type
IndexStyle(A) IndexStyle(typeof(A))
IndexStyle
specifies the "native indexing style" for array A
. When you define a new AbstractArray
type, you can choose to implement either linear indexing (with IndexLinear
) or cartesian indexing. If you decide to implement linear indexing, then you must set this trait for your array type:
Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()
The default is IndexCartesian()
.
Julia's internal indexing machinery will automatically (and invisibly) convert all indexing operations into the preferred style. This allows users to access elements of your array using any indexing style, even when explicit methods have not been provided.
If you define both styles of indexing for your AbstractArray
, this trait can be used to select the most performant indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on the most efficient access pattern. In particular, eachindex
creates an iterator whose type depends on the setting of this trait.
Base.IndexLinear
Type
IndexLinear()
Subtype of IndexStyle
used to describe arrays which are optimally indexed by one linear index.
A linear indexing style uses one integer to describe the position in the array (even if it's a multidimensional array) and column-major ordering is used to access the elements. For example, if A
were a (2, 3)
custom matrix type with linear indexing, and we referenced A[5]
(using linear style), this would be equivalent to referencing A[1, 3]
(since 2*1 + 3 = 5
). See also IndexCartesian
.
Base.IndexCartesian
Type
IndexCartesian()
Subtype of IndexStyle
used to describe arrays which are optimally indexed by a Cartesian index.
A cartesian indexing style uses multiple integers/indices to describe the position in the array. For example, if A
were a (2, 3, 4)
custom matrix type with cartesian indexing, we could reference A[2, 1, 3]
and Julia would automatically convert this into the correct location in the underlying memory. See also IndexLinear
.
Base.conj!
Function
conj!(A)
Transform an array to its complex conjugate in-place.
See also conj
.
Examples
julia> A = [1+im 2-im; 2+2im 3+im] 2×2 Array{Complex{Int64},2}: 1+1im 2-1im 2+2im 3+1im julia> conj!(A); julia> A 2×2 Array{Complex{Int64},2}: 1-1im 2+1im 2-2im 3-1imsource
Base.stride
Function
stride(A, k::Integer)
Return the distance in memory (in number of elements) between adjacent elements in dimension k
.
Examples
julia> A = fill(1, (3,4,5)); julia> stride(A,2) 3 julia> stride(A,3) 12source
Base.strides
Function
strides(A)
Return a tuple of the memory strides in each dimension.
Examples
julia> A = fill(1, (3,4,5)); julia> strides(A) (1, 3, 12)source
Broadcast and vectorization
See also the dot syntax for vectorizing functions; for example, f.(args...)
implicitly calls broadcast(f, args...)
. Rather than relying on "vectorized" methods of functions like sin
to operate on arrays, you should use sin.(a)
to vectorize via broadcast
.
Base.Broadcast.broadcast
Function
broadcast(f, As...)
Broadcast the function f
over the arrays, tuples, collections, Ref
s and/or scalars As
.
Broadcasting applies the function f
over the elements of the container arguments and the scalars themselves in As
. Singleton and missing dimensions are expanded to match the extents of the other arguments by virtually repeating the value. By default, only a limited number of types are considered scalars, including Number
s, String
s, Symbol
s, Type
s, Function
s and some common singletons like missing
and nothing
. All other arguments are iterated over or indexed into elementwise.
The resulting container type is established by the following rules:
- If all the arguments are scalars or zero-dimensional arrays, it returns an unwrapped scalar.
- If at least one argument is a tuple and all others are scalars or zero-dimensional arrays, it returns a tuple.
- All other combinations of arguments default to returning an
Array
, but custom container types can define their own implementation and promotion-like rules to customize the result when they appear as arguments.
A special syntax exists for broadcasting: f.(args...)
is equivalent to broadcast(f, args...)
, and nested f.(g.(args...))
calls are fused into a single broadcast loop.
Examples
julia> A = [1, 2, 3, 4, 5] 5-element Array{Int64,1}: 1 2 3 4 5 julia> B = [1 2; 3 4; 5 6; 7 8; 9 10] 5×2 Array{Int64,2}: 1 2 3 4 5 6 7 8 9 10 julia> broadcast(+, A, B) 5×2 Array{Int64,2}: 2 3 5 6 8 9 11 12 14 15 julia> parse.(Int, ["1", "2"]) 2-element Array{Int64,1}: 1 2 julia> abs.((1, -2)) (1, 2) julia> broadcast(+, 1.0, (0, -2.0)) (1.0, -1.0) julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1])) 2-element Array{Array{Int64,1},1}: [1, 1] [2, 2] julia> string.(("one","two","three","four"), ": ", 1:4) 4-element Array{String,1}: "one: 1" "two: 2" "three: 3" "four: 4"source
Base.Broadcast.broadcast!
Function
broadcast!(f, dest, As...)
Like broadcast
, but store the result of broadcast(f, As...)
in the dest
array. Note that dest
is only used to store the result, and does not supply arguments to f
unless it is also listed in the As
, as in broadcast!(f, A, A, B)
to perform A[:] = broadcast(f, A, B)
.
Examples
julia> A = [1.0; 0.0]; B = [0.0; 0.0]; julia> broadcast!(+, B, A, (0, -2.0)); julia> B 2-element Array{Float64,1}: 1.0 -2.0 julia> A 2-element Array{Float64,1}: 1.0 0.0 julia> broadcast!(+, A, A, (0, -2.0)); julia> A 2-element Array{Float64,1}: 1.0 -2.0source
Base.Broadcast.@__dot__
Macro
@. expr
Convert every function call or operator in expr
into a "dot call" (e.g. convert f(x)
to f.(x)
), and convert every assignment in expr
to a "dot assignment" (e.g. convert +=
to .+=
).
If you want to avoid adding dots for selected function calls in expr
, splice those function calls in with $
. For example, @. sqrt(abs($sort(x)))
is equivalent to sqrt.(abs.(sort(x)))
(no dot for sort
).
(@.
is equivalent to a call to @__dot__
.)
Examples
julia> x = 1.0:3.0; y = similar(x); julia> @. y = x + 3 * sin(x) 3-element Array{Float64,1}: 3.5244129544236893 4.727892280477045 3.4233600241796016source
For specializing broadcast on custom types, see
Base.Broadcast.BroadcastStyle
Type
BroadcastStyle
is an abstract type and trait-function used to determine behavior of objects under broadcasting. BroadcastStyle(typeof(x))
returns the style associated with x
. To customize the broadcasting behavior of a type, one can declare a style by defining a type/method pair
struct MyContainerStyle <: BroadcastStyle end Base.BroadcastStyle(::Type{<:MyContainer}) = MyContainerStyle()
One then writes method(s) (at least similar
) operating on Broadcasted{MyContainerStyle}
. There are also several pre-defined subtypes of BroadcastStyle
that you may be able to leverage; see the Interfaces chapter for more information.
Base.Broadcast.broadcast_axes
Function
Base.broadcast_axes(A)
Compute the axes for A
.
This should only be specialized for objects that do not define axes
but want to participate in broadcasting.
Base.Broadcast.AbstractArrayStyle
Type
Broadcast.AbstractArrayStyle{N} <: BroadcastStyle
is the abstract supertype for any style associated with an AbstractArray
type. The N
parameter is the dimensionality, which can be handy for AbstractArray types that only support specific dimensionalities:
struct SparseMatrixStyle <: Broadcast.AbstractArrayStyle{2} end Base.BroadcastStyle(::Type{<:SparseMatrixCSC}) = SparseMatrixStyle()
For AbstractArray
types that support arbitrary dimensionality, N
can be set to Any
:
struct MyArrayStyle <: Broadcast.AbstractArrayStyle{Any} end Base.BroadcastStyle(::Type{<:MyArray}) = MyArrayStyle()
In cases where you want to be able to mix multiple AbstractArrayStyle
s and keep track of dimensionality, your style needs to support a Val
constructor:
struct MyArrayStyleDim{N} <: Broadcast.AbstractArrayStyle{N} end (::Type{<:MyArrayStyleDim})(::Val{N}) where N = MyArrayStyleDim{N}()
Note that if two or more AbstractArrayStyle
subtypes conflict, broadcasting machinery will fall back to producing Array
s. If this is undesirable, you may need to define binary BroadcastStyle
rules to control the output type.
See also Broadcast.DefaultArrayStyle
.
Base.Broadcast.ArrayStyle
Type
Broadcast.ArrayStyle{MyArrayType}()
is a BroadcastStyle
indicating that an object behaves as an array for broadcasting. It presents a simple way to construct Broadcast.AbstractArrayStyle
s for specific AbstractArray
container types. Broadcast styles created this way lose track of dimensionality; if keeping track is important for your type, you should create your own custom Broadcast.AbstractArrayStyle
.
Base.Broadcast.DefaultArrayStyle
Type
Broadcast.DefaultArrayStyle{N}()
is a BroadcastStyle
indicating that an object behaves as an N
-dimensional array for broadcasting. Specifically, DefaultArrayStyle
is used for any AbstractArray
type that hasn't defined a specialized style, and in the absence of overrides from other broadcast
arguments the resulting output type is Array
. When there are multiple inputs to broadcast
, DefaultArrayStyle
"loses" to any other Broadcast.ArrayStyle
.
Base.Broadcast.broadcastable
Function
Broadcast.broadcastable(x)
Return either x
or an object like x
such that it supports axes
, indexing, and its type supports ndims
.
If x
supports iteration, the returned value should have the same axes
and indexing behaviors as collect(x)
.
If x
is not an AbstractArray
but it supports axes
, indexing, and its type supports ndims
, then broadcastable(::typeof(x))
may be implemented to just return itself. Further, if x
defines its own BroadcastStyle
, then it must define its broadcastable
method to return itself for the custom style to have any effect.
Examples
julia> Broadcast.broadcastable([1,2,3]) # like `identity` since arrays already support axes and indexing 3-element Array{Int64,1}: 1 2 3 julia> Broadcast.broadcastable(Int) # Types don't support axes, indexing, or iteration but are commonly used as scalars Base.RefValue{Type{Int64}}(Int64) julia> Broadcast.broadcastable("hello") # Strings break convention of matching iteration and act like a scalar instead Base.RefValue{String}("hello")source
Indexing and assignment
Base.getindex
Method
getindex(A, inds...)
Return a subset of array A
as specified by inds
, where each ind
may be an Int
, an AbstractRange
, or a Vector
. See the manual section on array indexing for details.
Examples
julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> getindex(A, 1) 1 julia> getindex(A, [2, 1]) 2-element Array{Int64,1}: 3 1 julia> getindex(A, 2:4) 3-element Array{Int64,1}: 3 2 4source
Base.setindex!
Method
setindex!(A, X, inds...) A[inds...] = X
Store values from array X
within some subset of A
as specified by inds
. The syntax A[inds...] = X
is equivalent to setindex!(A, X, inds...)
.
Examples
julia> A = zeros(2,2); julia> setindex!(A, [10, 20], [1, 2]); julia> A[[3, 4]] = [30, 40]; julia> A 2×2 Array{Float64,2}: 10.0 30.0 20.0 40.0source
Base.copyto!
Method
copyto!(dest, Rdest::CartesianIndices, src, Rsrc::CartesianIndices) -> dest
Copy the block of src
in the range of Rsrc
to the block of dest
in the range of Rdest
. The sizes of the two regions must match.
Base.isassigned
Function
isassigned(array, i) -> Bool
Test whether the given array has a value associated with index i
. Return false
if the index is out of bounds, or has an undefined reference.
Examples
julia> isassigned(rand(3, 3), 5) true julia> isassigned(rand(3, 3), 3 * 3 + 1) false julia> mutable struct Foo end julia> v = similar(rand(3), Foo) 3-element Array{Foo,1}: #undef #undef #undef julia> isassigned(v, 1) falsesource
Base.Colon
Type
Colon()
Colons (:) are used to signify indexing entire objects or dimensions at once.
Very few operations are defined on Colons directly; instead they are converted by to_indices
to an internal vector type (Base.Slice
) to represent the collection of indices they span before being used.
The singleton instance of Colon
is also a function used to construct ranges; see :
.
Base.IteratorsMD.CartesianIndex
Type
CartesianIndex(i, j, k...) -> I CartesianIndex((i, j, k...)) -> I
Create a multidimensional index I
, which can be used for indexing a multidimensional array A
. In particular, A[I]
is equivalent to A[i,j,k...]
. One can freely mix integer and CartesianIndex
indices; for example, A[Ipre, i, Ipost]
(where Ipre
and Ipost
are CartesianIndex
indices and i
is an Int
) can be a useful expression when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.
A CartesianIndex
is sometimes produced by eachindex
, and always when iterating with an explicit CartesianIndices
.
Examples
julia> A = reshape(Vector(1:16), (2, 2, 2, 2)) 2×2×2×2 Array{Int64,4}: [:, :, 1, 1] = 1 3 2 4 [:, :, 2, 1] = 5 7 6 8 [:, :, 1, 2] = 9 11 10 12 [:, :, 2, 2] = 13 15 14 16 julia> A[CartesianIndex((1, 1, 1, 1))] 1 julia> A[CartesianIndex((1, 1, 1, 2))] 9 julia> A[CartesianIndex((1, 1, 2, 1))] 5source
Base.IteratorsMD.CartesianIndices
Type
CartesianIndices(sz::Dims) -> R CartesianIndices((istart:istop, jstart:jstop, ...)) -> R
Define a region R
spanning a multidimensional rectangular range of integer indices. These are most commonly encountered in the context of iteration, where for I in R ... end
will return CartesianIndex
indices I
equivalent to the nested loops
for j = jstart:jstop for i = istart:istop ... end end
Consequently these can be useful for writing algorithms that work in arbitrary dimensions.
CartesianIndices(A::AbstractArray) -> R
As a convenience, constructing a CartesianIndices
from an array makes a range of its indices.
Examples
julia> foreach(println, CartesianIndices((2, 2, 2))) CartesianIndex(1, 1, 1) CartesianIndex(2, 1, 1) CartesianIndex(1, 2, 1) CartesianIndex(2, 2, 1) CartesianIndex(1, 1, 2) CartesianIndex(2, 1, 2) CartesianIndex(1, 2, 2) CartesianIndex(2, 2, 2) julia> CartesianIndices(fill(1, (2,3))) 2×3 CartesianIndices{2,Tuple{Base.OneTo{Int64},Base.OneTo{Int64}}}: CartesianIndex(1, 1) CartesianIndex(1, 2) CartesianIndex(1, 3) CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(2, 3)
Conversion between linear and cartesian indices
Linear index to cartesian index conversion exploits the fact that a CartesianIndices
is an AbstractArray
and can be indexed linearly:
julia> cartesian = CartesianIndices((1:3, 1:2)) 3×2 CartesianIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}: CartesianIndex(1, 1) CartesianIndex(1, 2) CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(3, 1) CartesianIndex(3, 2) julia> cartesian[4] CartesianIndex(1, 2)
For cartesian to linear index conversion, see LinearIndices
.
Base.Dims
Type
Dims{N}
An NTuple
of N
Int
s used to represent the dimensions of an AbstractArray
.
Base.LinearIndices
Type
LinearIndices(A::AbstractArray)
Return a LinearIndices
array with the same shape and axes
as A
, holding the linear index of each entry in A
. Indexing this array with cartesian indices allows mapping them to linear indices.
For arrays with conventional indexing (indices start at 1), or any multidimensional array, linear indices range from 1 to length(A)
. However, for AbstractVector
s linear indices are axes(A, 1)
, and therefore do not start at 1 for vectors with unconventional indexing.
Calling this function is the "safe" way to write algorithms that exploit linear indexing.
Examples
julia> A = fill(1, (5,6,7)); julia> b = LinearIndices(A); julia> extrema(b) (1, 210)
LinearIndices(inds::CartesianIndices) -> R LinearIndices(sz::Dims) -> R LinearIndices((istart:istop, jstart:jstop, ...)) -> R
Return a LinearIndices
array with the specified shape or axes
.
Example
The main purpose of this constructor is intuitive conversion from cartesian to linear indexing:
julia> linear = LinearIndices((1:3, 1:2)) 3×2 LinearIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}: 1 4 2 5 3 6 julia> linear[1,2] 4source
Base.to_indices
Function
to_indices(A, I::Tuple)
Convert the tuple I
to a tuple of indices for use in indexing into array A
.
The returned tuple must only contain either Int
s or AbstractArray
s of scalar indices that are supported by array A
. It will error upon encountering a novel index type that it does not know how to process.
For simple index types, it defers to the unexported Base.to_index(A, i)
to process each index i
. While this internal function is not intended to be called directly, Base.to_index
may be extended by custom array or index types to provide custom indexing behaviors.
More complicated index types may require more context about the dimension into which they index. To support those cases, to_indices(A, I)
calls to_indices(A, axes(A), I)
, which then recursively walks through both the given tuple of indices and the dimensional indices of A
in tandem. As such, not all index types are guaranteed to propagate to Base.to_index
.
Base.checkbounds
Function
checkbounds(Bool, A, I...)
Return true
if the specified indices I
are in bounds for the given array A
. Subtypes of AbstractArray
should specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one can rely on A
's indices and checkindex
.
See also checkindex
.
Examples
julia> A = rand(3, 3); julia> checkbounds(Bool, A, 2) true julia> checkbounds(Bool, A, 3, 4) false julia> checkbounds(Bool, A, 1:3) true julia> checkbounds(Bool, A, 1:3, 2:4) falsesource
checkbounds(A, I...)
Throw an error if the specified indices I
are not in bounds for the given array A
.
Base.checkindex
Function
checkindex(Bool, inds::AbstractUnitRange, index)
Return true
if the given index
is within the bounds of inds
. Custom types that would like to behave as indices for all arrays can extend this method in order to provide a specialized bounds checking implementation.
Examples
julia> checkindex(Bool, 1:20, 8) true julia> checkindex(Bool, 1:20, 21) falsesource
Views (SubArrays and other view types)
Base.view
Function
view(A, inds...)
Like getindex
, but returns a view into the parent array A
with the given indices instead of making a copy. Calling getindex
or setindex!
on the returned SubArray
computes the indices to the parent array on the fly without checking bounds.
Examples
julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> b = view(A, :, 1) 2-element view(::Array{Int64,2}, :, 1) with eltype Int64: 1 3 julia> fill!(b, 0) 2-element view(::Array{Int64,2}, :, 1) with eltype Int64: 0 0 julia> A # Note A has changed even though we modified b 2×2 Array{Int64,2}: 0 2 0 4source
Base.@view
Macro
@view A[inds...]
Creates a SubArray
from an indexing expression. This can only be applied directly to a reference expression (e.g. @view A[1,2:end]
), and should not be used as the target of an assignment (e.g. @view(A[1,2:end]) = ...
). See also @views
to switch an entire block of code to use views for slicing.
Examples
julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> b = @view A[:, 1] 2-element view(::Array{Int64,2}, :, 1) with eltype Int64: 1 3 julia> fill!(b, 0) 2-element view(::Array{Int64,2}, :, 1) with eltype Int64: 0 0 julia> A 2×2 Array{Int64,2}: 0 2 0 4source
Base.@views
Macro
@views expression
Convert every array-slicing operation in the given expression (which may be a begin
/end
block, loop, function, etc.) to return a view. Scalar indices, non-array types, and explicit getindex
calls (as opposed to array[...]
) are unaffected.
The @views
macro only affects array[...]
expressions that appear explicitly in the given expression
, not array slicing that occurs in functions called by that code.
Examples
julia> A = zeros(3, 3); julia> @views for row in 1:3 b = A[row, :] b[:] .= row end julia> A 3×3 Array{Float64,2}: 1.0 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0source
Base.parent
Function
parent(A)
Returns the "parent array" of an array view type (e.g., SubArray
), or the array itself if it is not a view.
Examples
julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> V = view(A, 1:2, :) 2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64: 1 2 3 4 julia> parent(V) 2×2 Array{Int64,2}: 1 2 3 4source
Base.parentindices
Function
parentindices(A)
Return the indices in the parent
which correspond to the array view A
.
Examples
julia> A = [1 2; 3 4]; julia> V = view(A, 1, :) 2-element view(::Array{Int64,2}, 1, :) with eltype Int64: 1 2 julia> parentindices(V) (1, Base.Slice(Base.OneTo(2)))source
Base.selectdim
Function
selectdim(A, d::Integer, i)
Return a view of all the data of A
where the index for dimension d
equals i
.
Equivalent to view(A,:,:,...,i,:,:,...)
where i
is in position d
.
Examples
julia> A = [1 2 3 4; 5 6 7 8] 2×4 Array{Int64,2}: 1 2 3 4 5 6 7 8 julia> selectdim(A, 2, 3) 2-element view(::Array{Int64,2}, :, 3) with eltype Int64: 3 7source
Base.reinterpret
Function
reinterpret(type, A)
Change the type-interpretation of a block of memory. For arrays, this constructs a view of the array with the same binary data as the given array, but with the specified element type. For example, reinterpret(Float32, UInt32(7))
interprets the 4 bytes corresponding to UInt32(7)
as a Float32
.
Examples
julia> reinterpret(Float32, UInt32(7)) 1.0f-44 julia> reinterpret(Float32, UInt32[1 2 3 4 5]) 1×5 reinterpret(Float32, ::Array{UInt32,2}): 1.4013e-45 2.8026e-45 4.2039e-45 5.60519e-45 7.00649e-45source
Base.reshape
Function
reshape(A, dims...) -> AbstractArray reshape(A, dims) -> AbstractArray
Return an array with the same data as A
, but with different dimension sizes or number of dimensions. The two arrays share the same underlying data, so that the result is mutable if and only if A
is mutable, and setting elements of one alters the values of the other.
The new dimensions may be specified either as a list of arguments or as a shape tuple. At most one dimension may be specified with a :
, in which case its length is computed such that its product with all the specified dimensions is equal to the length of the original array A
. The total number of elements must not change.
Examples
julia> A = Vector(1:16) 16-element Array{Int64,1}: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 julia> reshape(A, (4, 4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> reshape(A, 2, :) 2×8 Array{Int64,2}: 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 julia> reshape(1:6, 2, 3) 2×3 reshape(::UnitRange{Int64}, 2, 3) with eltype Int64: 1 3 5 2 4 6source
Base.dropdims
Function
dropdims(A; dims)
Remove the dimensions specified by dims
from array A
. Elements of dims
must be unique and within the range 1:ndims(A)
. size(A,i)
must equal 1 for all i
in dims
.
Examples
julia> a = reshape(Vector(1:4),(2,2,1,1)) 2×2×1×1 Array{Int64,4}: [:, :, 1, 1] = 1 3 2 4 julia> dropdims(a; dims=3) 2×2×1 Array{Int64,3}: [:, :, 1] = 1 3 2 4source
Base.vec
Function
vec(a::AbstractArray) -> AbstractVector
Reshape the array a
as a one-dimensional column vector. Return a
if it is already an AbstractVector
. The resulting array shares the same underlying data as a
, so it will only be mutable if a
is mutable, in which case modifying one will also modify the other.
Examples
julia> a = [1 2 3; 4 5 6] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> vec(a) 6-element Array{Int64,1}: 1 4 2 5 3 6 julia> vec(1:3) 1:3
See also reshape
.
Concatenation and permutation
Base.cat
Function
cat(A...; dims=dims)
Concatenate the input arrays along the specified dimensions in the iterable dims
. For dimensions not in dims
, all input arrays should have the same size, which will also be the size of the output array along that dimension. For dimensions in dims
, the size of the output array is the sum of the sizes of the input arrays along that dimension. If dims
is a single number, the different arrays are tightly stacked along that dimension. If dims
is an iterable containing several dimensions, this allows one to construct block diagonal matrices and their higher-dimensional analogues by simultaneously increasing several dimensions for every new input array and putting zero blocks elsewhere. For example, cat(matrices...; dims=(1,2))
builds a block diagonal matrix, i.e. a block matrix with matrices[1]
, matrices[2]
, ... as diagonal blocks and matching zero blocks away from the diagonal.
Base.vcat
Function
vcat(A...)
Concatenate along dimension 1.
Examples
julia> a = [1 2 3 4 5] 1×5 Array{Int64,2}: 1 2 3 4 5 julia> b = [6 7 8 9 10; 11 12 13 14 15] 2×5 Array{Int64,2}: 6 7 8 9 10 11 12 13 14 15 julia> vcat(a,b) 3×5 Array{Int64,2}: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 julia> c = ([1 2 3], [4 5 6]) ([1 2 3], [4 5 6]) julia> vcat(c...) 2×3 Array{Int64,2}: 1 2 3 4 5 6source
Base.hcat
Function
hcat(A...)
Concatenate along dimension 2.
Examples
julia> a = [1; 2; 3; 4; 5] 5-element Array{Int64,1}: 1 2 3 4 5 julia> b = [6 7; 8 9; 10 11; 12 13; 14 15] 5×2 Array{Int64,2}: 6 7 8 9 10 11 12 13 14 15 julia> hcat(a,b) 5×3 Array{Int64,2}: 1 6 7 2 8 9 3 10 11 4 12 13 5 14 15 julia> c = ([1; 2; 3], [4; 5; 6]) ([1, 2, 3], [4, 5, 6]) julia> hcat(c...) 3×2 Array{Int64,2}: 1 4 2 5 3 6source
Base.hvcat
Function
hvcat(rows::Tuple{Vararg{Int}}, values...)
Horizontal and vertical concatenation in one call. This function is called for block matrix syntax. The first argument specifies the number of arguments to concatenate in each block row.
Examples
julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6 (1, 2, 3, 4, 5, 6) julia> [a b c; d e f] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> hvcat((3,3), a,b,c,d,e,f) 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> [a b;c d; e f] 3×2 Array{Int64,2}: 1 2 3 4 5 6 julia> hvcat((2,2,2), a,b,c,d,e,f) 3×2 Array{Int64,2}: 1 2 3 4 5 6
If the first argument is a single integer n
, then all block rows are assumed to have n
block columns.
Base.vect
Function
vect(X...)
Create a Vector
with element type computed from the promote_typeof
of the argument, containing the argument list.
Examples
julia> a = Base.vect(UInt8(1), 2.5, 1//2) 3-element Array{Float64,1}: 1.0 2.5 0.5source
Base.circshift
Function
circshift(A, shifts)
Circularly shift, i.e. rotate, the data in an array. The second argument is a tuple or vector giving the amount to shift in each dimension, or an integer to shift only in the first dimension.
Examples
julia> b = reshape(Vector(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> circshift(b, (0,2)) 4×4 Array{Int64,2}: 9 13 1 5 10 14 2 6 11 15 3 7 12 16 4 8 julia> circshift(b, (-1,0)) 4×4 Array{Int64,2}: 2 6 10 14 3 7 11 15 4 8 12 16 1 5 9 13 julia> a = BitArray([true, true, false, false, true]) 5-element BitArray{1}: true true false false true julia> circshift(a, 1) 5-element BitArray{1}: true true true false false julia> circshift(a, -1) 5-element BitArray{1}: true false false true true
See also circshift!
.
Base.circshift!
Function
circshift!(dest, src, shifts)
Circularly shift, i.e. rotate, the data in src
, storing the result in dest
. shifts
specifies the amount to shift in each dimension.
The dest
array must be distinct from the src
array (they cannot alias each other).
See also circshift
.
Base.circcopy!
Function
circcopy!(dest, src)
Copy src
to dest
, indexing each dimension modulo its length. src
and dest
must have the same size, but can be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of the overlap dest
agrees with src
.
Examples
julia> src = reshape(Vector(1:16), (4,4)) 4×4 Array{Int64,2}: 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16 julia> dest = OffsetArray{Int}(undef, (0:3,2:5)) julia> circcopy!(dest, src) OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5: 8 12 16 4 5 9 13 1 6 10 14 2 7 11 15 3 julia> dest[1:3,2:4] == src[1:3,2:4] truesource
Base.findall
Method
findall(A)
Return a vector I
of the true
indices or keys of A
. If there are no such elements of A
, return an empty array. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [true, false, false, true] 4-element Array{Bool,1}: true false false true julia> findall(A) 2-element Array{Int64,1}: 1 4 julia> A = [true false; false true] 2×2 Array{Bool,2}: true false false true julia> findall(A) 2-element Array{CartesianIndex{2},1}: CartesianIndex(1, 1) CartesianIndex(2, 2) julia> findall(falses(3)) 0-element Array{Int64,1}source
Base.findall
Method
findall(f::Function, A)
Return a vector I
of the indices or keys of A
where f(A[I])
returns true
. If there are no such elements of A
, return an empty array.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> x = [1, 3, 4] 3-element Array{Int64,1}: 1 3 4 julia> findall(isodd, x) 2-element Array{Int64,1}: 1 2 julia> A = [1 2 0; 3 4 0] 2×3 Array{Int64,2}: 1 2 0 3 4 0 julia> findall(isodd, A) 2-element Array{CartesianIndex{2},1}: CartesianIndex(1, 1) CartesianIndex(2, 1) julia> findall(!iszero, A) 4-element Array{CartesianIndex{2},1}: CartesianIndex(1, 1) CartesianIndex(2, 1) CartesianIndex(1, 2) CartesianIndex(2, 2) julia> d = Dict(:A => 10, :B => -1, :C => 0) Dict{Symbol,Int64} with 3 entries: :A => 10 :B => -1 :C => 0 julia> findall(x -> x >= 0, d) 2-element Array{Symbol,1}: :A :Csource
Base.findfirst
Method
findfirst(A)
Return the index or key of the first true
value in A
. Return nothing
if no such value is found. To search for other kinds of values, pass a predicate as the first argument.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [false, false, true, false] 4-element Array{Bool,1}: false false true false julia> findfirst(A) 3 julia> findfirst(falses(3)) # returns nothing, but not printed in the REPL julia> A = [false false; true false] 2×2 Array{Bool,2}: false false true false julia> findfirst(A) CartesianIndex(2, 1)source
Base.findfirst
Method
findfirst(predicate::Function, A)
Return the index or key of the first element of A
for which predicate
returns true
. Return nothing
if there is no such element.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [1, 4, 2, 2] 4-element Array{Int64,1}: 1 4 2 2 julia> findfirst(iseven, A) 2 julia> findfirst(x -> x>10, A) # returns nothing, but not printed in the REPL julia> findfirst(isequal(4), A) 2 julia> A = [1 4; 2 2] 2×2 Array{Int64,2}: 1 4 2 2 julia> findfirst(iseven, A) CartesianIndex(2, 1)source
Base.findlast
Method
findlast(A)
Return the index or key of the last true
value in A
. Return nothing
if there is no true
value in A
.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [true, false, true, false] 4-element Array{Bool,1}: true false true false julia> findlast(A) 3 julia> A = falses(2,2); julia> findlast(A) # returns nothing, but not printed in the REPL julia> A = [true false; true false] 2×2 Array{Bool,2}: true false true false julia> findlast(A) CartesianIndex(2, 1)source
Base.findlast
Method
findlast(predicate::Function, A)
Return the index or key of the last element of A
for which predicate
returns true
. Return nothing
if there is no such element.
Indices or keys are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [1, 2, 3, 4] 4-element Array{Int64,1}: 1 2 3 4 julia> findlast(isodd, A) 3 julia> findlast(x -> x > 5, A) # returns nothing, but not printed in the REPL julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> findlast(isodd, A) CartesianIndex(2, 1)source
Base.findnext
Method
findnext(A, i)
Find the next index after or including i
of a true
element of A
, or nothing
if not found.
Indices are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [false, false, true, false] 4-element Array{Bool,1}: false false true false julia> findnext(A, 1) 3 julia> findnext(A, 4) # returns nothing, but not printed in the REPL julia> A = [false false; true false] 2×2 Array{Bool,2}: false false true false julia> findnext(A, CartesianIndex(1, 1)) CartesianIndex(2, 1)source
Base.findnext
Method
findnext(predicate::Function, A, i)
Find the next index after or including i
of an element of A
for which predicate
returns true
, or nothing
if not found.
Indices are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [1, 4, 2, 2]; julia> findnext(isodd, A, 1) 1 julia> findnext(isodd, A, 2) # returns nothing, but not printed in the REPL julia> A = [1 4; 2 2]; julia> findnext(isodd, A, CartesianIndex(1, 1)) CartesianIndex(1, 1)source
Base.findprev
Method
findprev(A, i)
Find the previous index before or including i
of a true
element of A
, or nothing
if not found.
Indices are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [false, false, true, true] 4-element Array{Bool,1}: false false true true julia> findprev(A, 3) 3 julia> findprev(A, 1) # returns nothing, but not printed in the REPL julia> A = [false false; true true] 2×2 Array{Bool,2}: false false true true julia> findprev(A, CartesianIndex(2, 1)) CartesianIndex(2, 1)source
Base.findprev
Method
findprev(predicate::Function, A, i)
Find the previous index before or including i
of an element of A
for which predicate
returns true
, or nothing
if not found.
Indices are of the same type as those returned by keys(A)
and pairs(A)
.
Examples
julia> A = [4, 6, 1, 2] 4-element Array{Int64,1}: 4 6 1 2 julia> findprev(isodd, A, 1) # returns nothing, but not printed in the REPL julia> findprev(isodd, A, 3) 3 julia> A = [4 6; 1 2] 2×2 Array{Int64,2}: 4 6 1 2 julia> findprev(isodd, A, CartesianIndex(1, 2)) CartesianIndex(2, 1)source
Base.permutedims
Function
permutedims(A::AbstractArray, perm)
Permute the dimensions of array A
. perm
is a vector specifying a permutation of length ndims(A)
.
See also: PermutedDimsArray
.
Examples
julia> A = reshape(Vector(1:8), (2,2,2)) 2×2×2 Array{Int64,3}: [:, :, 1] = 1 3 2 4 [:, :, 2] = 5 7 6 8 julia> permutedims(A, [3, 2, 1]) 2×2×2 Array{Int64,3}: [:, :, 1] = 1 3 5 7 [:, :, 2] = 2 4 6 8source
permutedims(m::AbstractMatrix)
Permute the dimensions of the matrix m
, by flipping the elements across the diagonal of the matrix. Differs from LinearAlgebra
's transpose
in that the operation is not recursive.
Examples
julia> a = [1 2; 3 4]; julia> b = [5 6; 7 8]; julia> c = [9 10; 11 12]; julia> d = [13 14; 15 16]; julia> X = [[a] [b]; [c] [d]] 2×2 Array{Array{Int64,2},2}: [1 2; 3 4] [5 6; 7 8] [9 10; 11 12] [13 14; 15 16] julia> permutedims(X) 2×2 Array{Array{Int64,2},2}: [1 2; 3 4] [9 10; 11 12] [5 6; 7 8] [13 14; 15 16] julia> transpose(X) 2×2 Transpose{Transpose{Int64,Array{Int64,2}},Array{Array{Int64,2},2}}: [1 3; 2 4] [9 11; 10 12] [5 7; 6 8] [13 15; 14 16]source
permutedims(v::AbstractVector)
Reshape vector v
into a 1 × length(v)
row matrix. Differs from LinearAlgebra
's transpose
in that the operation is not recursive.
Examples
julia> permutedims([1, 2, 3, 4]) 1×4 Array{Int64,2}: 1 2 3 4 julia> V = [[[1 2; 3 4]]; [[5 6; 7 8]]] 2-element Array{Array{Int64,2},1}: [1 2; 3 4] [5 6; 7 8] julia> permutedims(V) 1×2 Array{Array{Int64,2},2}: [1 2; 3 4] [5 6; 7 8] julia> transpose(V) 1×2 Transpose{Transpose{Int64,Array{Int64,2}},Array{Array{Int64,2},1}}: [1 3; 2 4] [5 7; 6 8]source
Base.permutedims!
Function
permutedims!(dest, src, perm)
Permute the dimensions of array src
and store the result in the array dest
. perm
is a vector specifying a permutation of length ndims(src)
. The preallocated array dest
should have size(dest) == size(src)[perm]
and is completely overwritten. No in-place permutation is supported and unexpected results will happen if src
and dest
have overlapping memory regions.
See also permutedims
.
Base.PermutedDimsArrays.PermutedDimsArray
Type
PermutedDimsArray(A, perm) -> B
Given an AbstractArray A
, create a view B
such that the dimensions appear to be permuted. Similar to permutedims
, except that no copying occurs (B
shares storage with A
).
See also: permutedims
.
Examples
julia> A = rand(3,5,4); julia> B = PermutedDimsArray(A, (3,1,2)); julia> size(B) (4, 3, 5) julia> B[3,1,2] == A[1,2,3] truesource
Base.promote_shape
Function
promote_shape(s1, s2)
Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has more dimensions.
Examples
julia> a = fill(1, (3,4,1,1,1)); julia> b = fill(1, (3,4)); julia> promote_shape(a,b) (Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1)) julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1)) (2, 3, 1, 4, 1)source
Array functions
Base.accumulate
Function
accumulate(op, A; dims::Integer, [init])
Cumulative operation op
along the dimension dims
of A
(providing dims
is optional for vectors). An initial value init
may optionally be provided by a keyword argument. See also accumulate!
to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow). For common operations there are specialized variants of accumulate
, see: cumsum
, cumprod
Examples
julia> accumulate(+, [1,2,3]) 3-element Array{Int64,1}: 1 3 6 julia> accumulate(*, [1,2,3]) 3-element Array{Int64,1}: 1 2 6 julia> accumulate(+, [1,2,3]; init=100) 3-element Array{Int64,1}: 101 103 106 julia> accumulate(min, [1,2,-1]; init=0) 3-element Array{Int64,1}: 0 0 -1 julia> accumulate(+, fill(1, 3, 3), dims=1) 3×3 Array{Int64,2}: 1 1 1 2 2 2 3 3 3 julia> accumulate(+, fill(1, 3, 3), dims=2) 3×3 Array{Int64,2}: 1 2 3 1 2 3 1 2 3source
Base.accumulate!
Function
accumulate!(op, B, A; [dims], [init])
Cumulative operation op
on A
along the dimension dims
, storing the result in B
. Providing dims
is optional for vectors. If the keyword argument init
is given, its value is used to instantiate the accumulation. See also accumulate
.
Examples
julia> x = [1, 0, 2, 0, 3]; julia> y = [0, 0, 0, 0, 0]; julia> accumulate!(+, y, x); julia> y 5-element Array{Int64,1}: 1 1 3 3 6 julia> A = [1 2; 3 4]; julia> B = [0 0; 0 0]; julia> accumulate!(-, B, A, dims=1); julia> B 2×2 Array{Int64,2}: 1 2 -2 -2 julia> accumulate!(-, B, A, dims=2); julia> B 2×2 Array{Int64,2}: 1 -1 3 -1source
Base.cumprod
Function
cumprod(A; dims::Integer)
Cumulative product along the dimension dim
. See also cumprod!
to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> cumprod(a, dims=1) 2×3 Array{Int64,2}: 1 2 3 4 10 18 julia> cumprod(a, dims=2) 2×3 Array{Int64,2}: 1 2 6 4 20 120source
cumprod(x::AbstractVector)
Cumulative product of a vector. See also cumprod!
to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> cumprod(fill(1//2, 3)) 3-element Array{Rational{Int64},1}: 1//2 1//4 1//8 julia> cumprod([fill(1//3, 2, 2) for i in 1:3]) 3-element Array{Array{Rational{Int64},2},1}: [1//3 1//3; 1//3 1//3] [2//9 2//9; 2//9 2//9] [4//27 4//27; 4//27 4//27]source
Base.cumprod!
Function
cumprod!(B, A; dims::Integer)
Cumulative product of A
along the dimension dims
, storing the result in B
. See also cumprod
.
cumprod!(y::AbstractVector, x::AbstractVector)
Cumulative product of a vector x
, storing the result in y
. See also cumprod
.
Base.cumsum
Function
cumsum(A; dims::Integer)
Cumulative sum along the dimension dims
. See also cumsum!
to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> a = [1 2 3; 4 5 6] 2×3 Array{Int64,2}: 1 2 3 4 5 6 julia> cumsum(a, dims=1) 2×3 Array{Int64,2}: 1 2 3 5 7 9 julia> cumsum(a, dims=2) 2×3 Array{Int64,2}: 1 3 6 4 9 15source
cumsum(x::AbstractVector)
Cumulative sum a vector. See also cumsum!
to use a preallocated output array, both for performance and to control the precision of the output (e.g. to avoid overflow).
Examples
julia> cumsum([1, 1, 1]) 3-element Array{Int64,1}: 1 2 3 julia> cumsum([fill(1, 2) for i in 1:3]) 3-element Array{Array{Int64,1},1}: [1, 1] [2, 2] [3, 3]source
Base.cumsum!
Function
cumsum!(B, A; dims::Integer)
Cumulative sum of A
along the dimension dims
, storing the result in B
. See also cumsum
.
Base.diff
Function
diff(A::AbstractVector) diff(A::AbstractMatrix; dims::Integer)
Finite difference operator of matrix or vector A
. If A
is a matrix, specify the dimension over which to operate with the dims
keyword argument.
Examples
julia> a = [2 4; 6 16] 2×2 Array{Int64,2}: 2 4 6 16 julia> diff(a, dims=2) 2×1 Array{Int64,2}: 2 10 julia> diff(vec(a)) 3-element Array{Int64,1}: 4 -2 12source
Base.repeat
Function
repeat(A::AbstractArray, counts::Integer...)
Construct an array by repeating array A
a given number of times in each dimension, specified by counts
.
Examples
julia> repeat([1, 2, 3], 2) 6-element Array{Int64,1}: 1 2 3 1 2 3 julia> repeat([1, 2, 3], 2, 3) 6×3 Array{Int64,2}: 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3source
repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))
Construct an array by repeating the entries of A
. The i-th element of inner
specifies the number of times that the individual entries of the i-th dimension of A
should be repeated. The i-th element of outer
specifies the number of times that a slice along the i-th dimension of A
should be repeated. If inner
or outer
are omitted, no repetition is performed.
Examples
julia> repeat(1:2, inner=2) 4-element Array{Int64,1}: 1 1 2 2 julia> repeat(1:2, outer=2) 4-element Array{Int64,1}: 1 2 1 2 julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3)) 4×6 Array{Int64,2}: 1 2 1 2 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4 3 4 3 4source
repeat(s::AbstractString, r::Integer)
Repeat a string r
times. This can be written as s^r
.
See also: ^
Examples
julia> repeat("ha", 3) "hahaha"source
repeat(c::AbstractChar, r::Integer) -> String
Repeat a character r
times. This can equivalently be accomplished by calling c^r
.
Examples
julia> repeat('A', 3) "AAA"source
Base.rot180
Function
rot180(A)
Rotate matrix A
180 degrees.
Examples
julia> a = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> rot180(a) 2×2 Array{Int64,2}: 4 3 2 1source
rot180(A, k)
Rotate matrix A
180 degrees an integer k
number of times. If k
is even, this is equivalent to a copy
.
Examples
julia> a = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> rot180(a,1) 2×2 Array{Int64,2}: 4 3 2 1 julia> rot180(a,2) 2×2 Array{Int64,2}: 1 2 3 4source
Base.rotl90
Function
rotl90(A)
Rotate matrix A
left 90 degrees.
Examples
julia> a = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> rotl90(a) 2×2 Array{Int64,2}: 2 4 1 3source
rotl90(A, k)
Rotate matrix A
left 90 degrees an integer k
number of times. If k
is zero or a multiple of four, this is equivalent to a copy
.
Examples
julia> a = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> rotl90(a,1) 2×2 Array{Int64,2}: 2 4 1 3 julia> rotl90(a,2) 2×2 Array{Int64,2}: 4 3 2 1 julia> rotl90(a,3) 2×2 Array{Int64,2}: 3 1 4 2 julia> rotl90(a,4) 2×2 Array{Int64,2}: 1 2 3 4source
Base.rotr90
Function
rotr90(A)
Rotate matrix A
right 90 degrees.
Examples
julia> a = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> rotr90(a) 2×2 Array{Int64,2}: 3 1 4 2source
rotr90(A, k)
Rotate matrix A
right 90 degrees an integer k
number of times. If k
is zero or a multiple of four, this is equivalent to a copy
.
Examples
julia> a = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> rotr90(a,1) 2×2 Array{Int64,2}: 3 1 4 2 julia> rotr90(a,2) 2×2 Array{Int64,2}: 4 3 2 1 julia> rotr90(a,3) 2×2 Array{Int64,2}: 2 4 1 3 julia> rotr90(a,4) 2×2 Array{Int64,2}: 1 2 3 4source
Base.mapslices
Function
mapslices(f, A; dims)
Transform the given dimensions of array A
using function f
. f
is called on each slice of A
of the form A[...,:,...,:,...]
. dims
is an integer vector specifying where the colons go in this expression. The results are concatenated along the remaining dimensions. For example, if dims
is [1,2]
and A
is 4-dimensional, f
is called on A[:,:,i,j]
for all i
and j
.
Examples
julia> a = reshape(Vector(1:16),(2,2,2,2)) 2×2×2×2 Array{Int64,4}: [:, :, 1, 1] = 1 3 2 4 [:, :, 2, 1] = 5 7 6 8 [:, :, 1, 2] = 9 11 10 12 [:, :, 2, 2] = 13 15 14 16 julia> mapslices(sum, a, dims = [1,2]) 1×1×2×2 Array{Int64,4}: [:, :, 1, 1] = 10 [:, :, 2, 1] = 26 [:, :, 1, 2] = 42 [:, :, 2, 2] = 58source
Combinatorics
Base.invperm
Function
invperm(v)
Return the inverse permutation of v
. If B = A[v]
, then A == B[invperm(v)]
.
Examples
julia> v = [2; 4; 3; 1]; julia> invperm(v) 4-element Array{Int64,1}: 4 1 3 2 julia> A = ['a','b','c','d']; julia> B = A[v] 4-element Array{Char,1}: 'b' 'd' 'c' 'a' julia> B[invperm(v)] 4-element Array{Char,1}: 'a' 'b' 'c' 'd'source
Base.isperm
Function
isperm(v) -> Bool
Return true
if v
is a valid permutation.
Examples
julia> isperm([1; 2]) true julia> isperm([1; 3]) falsesource
Base.permute!
Method
permute!(v, p)
Permute vector v
in-place, according to permutation p
. No checking is done to verify that p
is a permutation.
To return a new permutation, use v[p]
. Note that this is generally faster than permute!(v,p)
for large vectors.
See also invpermute!
.
Examples
julia> A = [1, 1, 3, 4]; julia> perm = [2, 4, 3, 1]; julia> permute!(A, perm); julia> A 4-element Array{Int64,1}: 1 4 3 1source
Base.invpermute!
Function
invpermute!(v, p)
Like permute!
, but the inverse of the given permutation is applied.
Examples
julia> A = [1, 1, 3, 4]; julia> perm = [2, 4, 3, 1]; julia> invpermute!(A, perm); julia> A 4-element Array{Int64,1}: 4 1 3 1source
Base.reverse
Method
reverse(v [, start=1 [, stop=length(v) ]] )
Return a copy of v
reversed from start to stop. See also Iterators.reverse
for reverse-order iteration without making a copy.
Examples
julia> A = Vector(1:5) 5-element Array{Int64,1}: 1 2 3 4 5 julia> reverse(A) 5-element Array{Int64,1}: 5 4 3 2 1 julia> reverse(A, 1, 4) 5-element Array{Int64,1}: 4 3 2 1 5 julia> reverse(A, 3, 5) 5-element Array{Int64,1}: 1 2 5 4 3source
reverse(A; dims::Integer)
Reverse A
in dimension dims
.
Examples
julia> b = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> reverse(b, dims=2) 2×2 Array{Int64,2}: 2 1 4 3source
Base.reverseind
Function
reverseind(v, i)
Given an index i
in reverse(v)
, return the corresponding index in v
so that v[reverseind(v,i)] == reverse(v)[i]
. (This can be nontrivial in cases where v
contains non-ASCII characters.)
Examples
julia> r = reverse("Julia") "ailuJ" julia> for i in 1:length(r) print(r[reverseind("Julia", i)]) end Juliasource
Base.reverse!
Function
reverse!(v [, start=1 [, stop=length(v) ]]) -> v
In-place version of reverse
.
Examples
julia> A = Vector(1:5) 5-element Array{Int64,1}: 1 2 3 4 5 julia> reverse!(A); julia> A 5-element Array{Int64,1}: 5 4 3 2 1source
© 2009–2019 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/v1.0.4/base/arrays/