tensorflow::ops::SparseApplyFtrl
#include <training_ops.h>
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Summary
That is for rows we have grad for, we update var, accum and linear as follows: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- linear: Should be from a Variable().
- grad: The gradient.
- indices: A vector of indices into the first dimension of var and accum.
- lr: Scaling factor. Must be a scalar.
- l1: L1 regularization. Must be a scalar.
- l2: L2 regularization. Must be a scalar.
- lr_power: Scaling factor. Must be a scalar.
Optional attributes (see Attrs
):
- use_locking: If
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
-
Output
: Same as "var".
Constructors and Destructors | |
---|---|
SparseApplyFtrl(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power) | |
SparseApplyFtrl(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
Public attributes | |
---|---|
operation | |
out |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
Public static functions | |
---|---|
UseLocking(bool x) |
Structs | |
---|---|
tensorflow::ops::SparseApplyFtrl::Attrs | Optional attribute setters for SparseApplyFtrl. |
Public attributes
operation
Operation operation
out
::tensorflow::Output out
Public functions
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
SparseApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Public static functions
UseLocking
Attrs UseLocking( bool x )
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/cc/class/tensorflow/ops/sparse-apply-ftrl