Child Process
The child_process
module provides the ability to spawn child processes in a manner that is similar, but not identical, to popen(3)
. This capability is primarily provided by the child_process.spawn()
function:
const spawn = require('child_process').spawn; const ls = spawn('ls', ['-lh', '/usr']); ls.stdout.on('data', (data) => { console.log(`stdout: ${data}`); }); ls.stderr.on('data', (data) => { console.log(`stderr: ${data}`); }); ls.on('close', (code) => { console.log(`child process exited with code ${code}`); });
By default, pipes for stdin
, stdout
and stderr
are established between the parent Node.js process and the spawned child. It is possible to stream data through these pipes in a non-blocking way. Note, however, that some programs use line-buffered I/O internally. While that does not affect Node.js, it can mean that data sent to the child process may not be immediately consumed.
The child_process.spawn()
method spawns the child process asynchronously, without blocking the Node.js event loop. The child_process.spawnSync()
function provides equivalent functionality in a synchronous manner that blocks the event loop until the spawned process either exits or is terminated.
For convenience, the child_process
module provides a handful of synchronous and asynchronous alternatives to child_process.spawn()
and child_process.spawnSync()
. Note that each of these alternatives are implemented on top of child_process.spawn()
or child_process.spawnSync()
.
-
child_process.exec()
: spawns a shell and runs a command within that shell, passing thestdout
andstderr
to a callback function when complete. -
child_process.execFile()
: similar tochild_process.exec()
except that it spawns the command directly without first spawning a shell. -
child_process.fork()
: spawns a new Node.js process and invokes a specified module with an IPC communication channel established that allows sending messages between parent and child. -
child_process.execSync()
: a synchronous version ofchild_process.exec()
that will block the Node.js event loop. -
child_process.execFileSync()
: a synchronous version ofchild_process.execFile()
that will block the Node.js event loop.
For certain use cases, such as automating shell scripts, the synchronous counterparts may be more convenient. In many cases, however, the synchronous methods can have significant impact on performance due to stalling the event loop while spawned processes complete.
Asynchronous Process Creation
The child_process.spawn()
, child_process.fork()
, child_process.exec()
, and child_process.execFile()
methods all follow the idiomatic asynchronous programming pattern typical of other Node.js APIs.
Each of the methods returns a ChildProcess
instance. These objects implement the Node.js EventEmitter
API, allowing the parent process to register listener functions that are called when certain events occur during the life cycle of the child process.
The child_process.exec()
and child_process.execFile()
methods additionally allow for an optional callback
function to be specified that is invoked when the child process terminates.
Spawning .bat
and .cmd
files on Windows
The importance of the distinction between child_process.exec()
and child_process.execFile()
can vary based on platform. On Unix-type operating systems (Unix, Linux, OSX) child_process.execFile()
can be more efficient because it does not spawn a shell. On Windows, however, .bat
and .cmd
files are not executable on their own without a terminal, and therefore cannot be launched using child_process.execFile()
. When running on Windows, .bat
and .cmd
files can be invoked using child_process.spawn()
with the shell
option set, with child_process.exec()
, or by spawning cmd.exe
and passing the .bat
or .cmd
file as an argument (which is what the shell
option and child_process.exec()
do).
// On Windows Only ... const spawn = require('child_process').spawn; const bat = spawn('cmd.exe', ['/c', 'my.bat']); bat.stdout.on('data', (data) => { console.log(data); }); bat.stderr.on('data', (data) => { console.log(data); }); bat.on('exit', (code) => { console.log(`Child exited with code ${code}`); }); // OR... const exec = require('child_process').exec; exec('my.bat', (err, stdout, stderr) => { if (err) { console.error(err); return; } console.log(stdout); });
child_process.exec(command[, options][, callback])
-
command
<String> The command to run, with space-separated arguments -
options
<Object>-
cwd
<String> Current working directory of the child process -
env
<Object> Environment key-value pairs -
encoding
<String> (Default: 'utf8') -
shell
<String> Shell to execute the command with (Default: '/bin/sh' on UNIX, 'cmd.exe' on Windows, The shell should understand the-c
switch on UNIX or/s /c
on Windows. On Windows, command line parsing should be compatible withcmd.exe
.) -
timeout
<Number> (Default: 0) -
maxBuffer
<Number> largest amount of data (in bytes) allowed on stdout or stderr - if exceeded child process is killed (Default:200*1024
) -
killSignal
<String> | <Integer> (Default: 'SIGTERM') -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).)
-
-
callback
<Function> called with the output when process terminates - Returns: <ChildProcess>
Spawns a shell then executes the command
within that shell, buffering any generated output.
Note: Never pass unsanitised user input to this function. Any input containing shell metacharacters may be used to trigger arbitrary command execution.
const exec = require('child_process').exec; exec('cat *.js bad_file | wc -l', (error, stdout, stderr) => { if (error) { console.error(`exec error: ${error}`); return; } console.log(`stdout: ${stdout}`); console.log(`stderr: ${stderr}`); });
If a callback
function is provided, it is called with the arguments (error, stdout, stderr)
. On success, error
will be null
. On error, error
will be an instance of Error
. The error.code
property will be the exit code of the child process while error.signal
will be set to the signal that terminated the process. Any exit code other than 0
is considered to be an error.
The stdout
and stderr
arguments passed to the callback will contain the stdout and stderr output of the child process. By default, Node.js will decode the output as UTF-8 and pass strings to the callback. The encoding
option can be used to specify the character encoding used to decode the stdout and stderr output. If encoding
is 'buffer'
, or an unrecognized character encoding, Buffer
objects will be passed to the callback instead.
The options
argument may be passed as the second argument to customize how the process is spawned. The default options are:
{ encoding: 'utf8', timeout: 0, maxBuffer: 200*1024, killSignal: 'SIGTERM', cwd: null, env: null }
If timeout
is greater than 0
, the parent will send the the signal identified by the killSignal
property (the default is 'SIGTERM'
) if the child runs longer than timeout
milliseconds.
The maxBuffer
option specifies the largest amount of data (in bytes) allowed on stdout or stderr - if this value is exceeded then the child process is terminated.
Note: Unlike the exec()
POSIX system call, child_process.exec()
does not replace the existing process and uses a shell to execute the command.
child_process.execFile(file[, args][, options][, callback])
-
file
<String> The name or path of the executable file to run -
args
<Array> List of string arguments -
options
<Object>-
cwd
<String> Current working directory of the child process -
env
<Object> Environment key-value pairs -
encoding
<String> (Default: 'utf8') -
timeout
<Number> (Default: 0) -
maxBuffer
<Number> largest amount of data (in bytes) allowed on stdout or stderr - if exceeded child process is killed (Default: 200*1024) -
killSignal
<String> | <Integer> (Default: 'SIGTERM') -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).)
-
-
callback
<Function> called with the output when process terminates - Returns: <ChildProcess>
The child_process.execFile()
function is similar to child_process.exec()
except that it does not spawn a shell. Rather, the specified executable file
is spawned directly as a new process making it slightly more efficient than child_process.exec()
.
The same options as child_process.exec()
are supported. Since a shell is not spawned, behaviors such as I/O redirection and file globbing are not supported.
const execFile = require('child_process').execFile; const child = execFile('node', ['--version'], (error, stdout, stderr) => { if (error) { throw error; } console.log(stdout); });
The stdout
and stderr
arguments passed to the callback will contain the stdout and stderr output of the child process. By default, Node.js will decode the output as UTF-8 and pass strings to the callback. The encoding
option can be used to specify the character encoding used to decode the stdout and stderr output. If encoding
is 'buffer'
, or an unrecognized character encoding, Buffer
objects will be passed to the callback instead.
child_process.fork(modulePath[, args][, options])
-
modulePath
<String> The module to run in the child -
args
<Array> List of string arguments -
options
<Object>-
cwd
<String> Current working directory of the child process -
env
<Object> Environment key-value pairs -
execPath
<String> Executable used to create the child process -
execArgv
<Array> List of string arguments passed to the executable (Default:process.execArgv
) -
silent
<Boolean> If true, stdin, stdout, and stderr of the child will be piped to the parent, otherwise they will be inherited from the parent, see the'pipe'
and'inherit'
options forchild_process.spawn()
'sstdio
for more details (default is false) -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).)
-
- Returns: <ChildProcess>
The child_process.fork()
method is a special case of child_process.spawn()
used specifically to spawn new Node.js processes. Like child_process.spawn()
, a ChildProcess
object is returned. The returned ChildProcess
will have an additional communication channel built-in that allows messages to be passed back and forth between the parent and child. See ChildProcess#send()
for details.
It is important to keep in mind that spawned Node.js child processes are independent of the parent with exception of the IPC communication channel that is established between the two. Each process has its own memory, with their own V8 instances. Because of the additional resource allocations required, spawning a large number of child Node.js processes is not recommended.
By default, child_process.fork()
will spawn new Node.js instances using the process.execPath
of the parent process. The execPath
property in the options
object allows for an alternative execution path to be used.
Node.js processes launched with a custom execPath
will communicate with the parent process using the file descriptor (fd) identified using the environment variable NODE_CHANNEL_FD
on the child process. The input and output on this fd is expected to be line delimited JSON objects.
Note: Unlike the fork()
POSIX system call, child_process.fork()
does not clone the current process.
child_process.spawn(command[, args][, options])
-
command
<String> The command to run -
args
<Array> List of string arguments -
options
<Object>-
cwd
<String> Current working directory of the child process -
env
<Object> Environment key-value pairs -
stdio
<Array> | <String> Child's stdio configuration. (Seeoptions.stdio
) -
detached
<Boolean> Prepare child to run independently of its parent process. Specific behavior depends on the platform, seeoptions.detached
) -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).) -
shell
<Boolean> | <String> Iftrue
, runscommand
inside of a shell. Uses '/bin/sh' on UNIX, and 'cmd.exe' on Windows. A different shell can be specified as a string. The shell should understand the-c
switch on UNIX, or/s /c
on Windows. Defaults tofalse
(no shell).
-
- Returns: <ChildProcess>
The child_process.spawn()
method spawns a new process using the given command
, with command line arguments in args
. If omitted, args
defaults to an empty array.
Note: If the shell
option is enabled, do not pass unsanitised user input to this function. Any input containing shell metacharacters may be used to trigger arbitrary command execution.
A third argument may be used to specify additional options, with these defaults:
{ cwd: undefined, env: process.env }
Use cwd
to specify the working directory from which the process is spawned. If not given, the default is to inherit the current working directory.
Use env
to specify environment variables that will be visible to the new process, the default is process.env
.
Example of running ls -lh /usr
, capturing stdout
, stderr
, and the exit code:
const spawn = require('child_process').spawn; const ls = spawn('ls', ['-lh', '/usr']); ls.stdout.on('data', (data) => { console.log(`stdout: ${data}`); }); ls.stderr.on('data', (data) => { console.log(`stderr: ${data}`); }); ls.on('close', (code) => { console.log(`child process exited with code ${code}`); });
Example: A very elaborate way to run 'ps ax | grep ssh'
const spawn = require('child_process').spawn; const ps = spawn('ps', ['ax']); const grep = spawn('grep', ['ssh']); ps.stdout.on('data', (data) => { grep.stdin.write(data); }); ps.stderr.on('data', (data) => { console.log(`ps stderr: ${data}`); }); ps.on('close', (code) => { if (code !== 0) { console.log(`ps process exited with code ${code}`); } grep.stdin.end(); }); grep.stdout.on('data', (data) => { console.log(`${data}`); }); grep.stderr.on('data', (data) => { console.log(`grep stderr: ${data}`); }); grep.on('close', (code) => { if (code !== 0) { console.log(`grep process exited with code ${code}`); } });
Example of checking for failed exec:
const spawn = require('child_process').spawn; const subprocess = spawn('bad_command'); subprocess.on('error', (err) => { console.log('Failed to start subprocess.'); });
options.detached
On Windows, setting options.detached
to true
makes it possible for the child process to continue running after the parent exits. The child will have its own console window. Once enabled for a child process, it cannot be disabled.
On non-Windows platforms, if options.detached
is set to true
, the child process will be made the leader of a new process group and session. Note that child processes may continue running after the parent exits regardless of whether they are detached or not. See setsid(2)
for more information.
By default, the parent will wait for the detached child to exit. To prevent the parent from waiting for a given subprocess
, use the subprocess.unref()
method. Doing so will cause the parent's event loop to not include the child in its reference count, allowing the parent to exit independently of the child, unless there is an established IPC channel between the child and parent.
When using the detached
option to start a long-running process, the process will not stay running in the background after the parent exits unless it is provided with a stdio
configuration that is not connected to the parent. If the parent's stdio
is inherited, the child will remain attached to the controlling terminal.
Example of a long-running process, by detaching and also ignoring its parent stdio
file descriptors, in order to ignore the parent's termination:
const spawn = require('child_process').spawn; const subprocess = spawn(process.argv[0], ['child_program.js'], { detached: true, stdio: 'ignore' }); subprocess.unref();
Alternatively one can redirect the child process' output into files:
const fs = require('fs'); const spawn = require('child_process').spawn; const out = fs.openSync('./out.log', 'a'); const err = fs.openSync('./out.log', 'a'); const subprocess = spawn('prg', [], { detached: true, stdio: [ 'ignore', out, err ] }); subprocess.unref();
options.stdio
The options.stdio
option is used to configure the pipes that are established between the parent and child process. By default, the child's stdin, stdout, and stderr are redirected to corresponding subprocess.stdin
, subprocess.stdout
, and subprocess.stderr
streams on the ChildProcess
object. This is equivalent to setting the options.stdio
equal to ['pipe',
'pipe', 'pipe']
.
For convenience, options.stdio
may be one of the following strings:
-
'pipe'
- equivalent to['pipe', 'pipe', 'pipe']
(the default) -
'ignore'
- equivalent to['ignore', 'ignore', 'ignore']
-
'inherit'
- equivalent to[process.stdin, process.stdout, process.stderr]
or[0,1,2]
Otherwise, the value of option.stdio
is an array where each index corresponds to an fd in the child. The fds 0, 1, and 2 correspond to stdin, stdout, and stderr, respectively. Additional fds can be specified to create additional pipes between the parent and child. The value is one of the following:
-
'pipe'
- Create a pipe between the child process and the parent process. The parent end of the pipe is exposed to the parent as a property on thechild_process
object asChildProcess.stdio[fd]
. Pipes created for fds 0 - 2 are also available as ChildProcess.stdin, ChildProcess.stdout and ChildProcess.stderr, respectively. -
'ipc'
- Create an IPC channel for passing messages/file descriptors between parent and child. A ChildProcess may have at most one IPC stdio file descriptor. Setting this option enables the ChildProcess.send() method. If the child writes JSON messages to this file descriptor, theChildProcess.on('message')
event handler will be triggered in the parent. If the child is a Node.js process, the presence of an IPC channel will enableprocess.send()
,process.disconnect()
,process.on('disconnect')
, andprocess.on('message')
within the child. -
'ignore'
- Instructs Node.js to ignore the fd in the child. While Node.js will always open fds 0 - 2 for the processes it spawns, setting the fd to'ignore'
will cause Node.js to open/dev/null
and attach it to the child's fd. -
Stream
object - Share a readable or writable stream that refers to a tty, file, socket, or a pipe with the child process. The stream's underlying file descriptor is duplicated in the child process to the fd that corresponds to the index in thestdio
array. Note that the stream must have an underlying descriptor (file streams do not until the'open'
event has occurred). - Positive integer - The integer value is interpreted as a file descriptor that is is currently open in the parent process. It is shared with the child process, similar to how
Stream
objects can be shared. -
null
,undefined
- Use default value. For stdio fds 0, 1 and 2 (in other words, stdin, stdout, and stderr) a pipe is created. For fd 3 and up, the default is'ignore'
.
Example:
const spawn = require('child_process').spawn; // Child will use parent's stdios spawn('prg', [], { stdio: 'inherit' }); // Spawn child sharing only stderr spawn('prg', [], { stdio: ['pipe', 'pipe', process.stderr] }); // Open an extra fd=4, to interact with programs presenting a // startd-style interface. spawn('prg', [], { stdio: ['pipe', null, null, null, 'pipe'] });
It is worth noting that when an IPC channel is established between the parent and child processes, and the child is a Node.js process, the child is launched with the IPC channel unreferenced (using unref()
) until the child registers an event handler for the process.on('disconnect')
event or the process.on('message')
event.This allows the child to exit normally without the process being held open by the open IPC channel.
See also: child_process.exec()
and child_process.fork()
Synchronous Process Creation
The child_process.spawnSync()
, child_process.execSync()
, and child_process.execFileSync()
methods are synchronous and WILL block the Node.js event loop, pausing execution of any additional code until the spawned process exits.
Blocking calls like these are mostly useful for simplifying general purpose scripting tasks and for simplifying the loading/processing of application configuration at startup.
child_process.execFileSync(file[, args][, options])
-
file
<String> The name or path of the executable file to run -
args
<Array> List of string arguments -
options
<Object>-
cwd
<String> Current working directory of the child process -
input
<String> | <Buffer> The value which will be passed as stdin to the spawned process- supplying this value will override
stdio[0]
- supplying this value will override
-
stdio
<String> | <Array> Child's stdio configuration. (Default: 'pipe')-
stderr
by default will be output to the parent process' stderr unlessstdio
is specified
-
-
env
<Object> Environment key-value pairs -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).) -
timeout
<Number> In milliseconds the maximum amount of time the process is allowed to run. (Default: undefined) -
killSignal
<String> | <Integer> The signal value to be used when the spawned process will be killed. (Default: 'SIGTERM') -
maxBuffer
<Number> largest amount of data (in bytes) allowed on stdout or stderr - if exceeded child process is killed -
encoding
<String> The encoding used for all stdio inputs and outputs. (Default: 'buffer')
-
- Returns: <Buffer> | <String> The stdout from the command
The child_process.execFileSync()
method is generally identical to child_process.execFile()
with the exception that the method will not return until the child process has fully closed. When a timeout has been encountered and killSignal
is sent, the method won't return until the process has completely exited. Note that if the child process intercepts and handles the SIGTERM
signal and does not exit, the parent process will still wait until the child process has exited.
If the process times out, or has a non-zero exit code, this method will throw. The Error
object will contain the entire result from child_process.spawnSync()
child_process.execSync(command[, options])
-
command
<String> The command to run -
options
<Object>-
cwd
<String> Current working directory of the child process -
input
<String> | <Buffer> The value which will be passed as stdin to the spawned process- supplying this value will override
stdio[0]
- supplying this value will override
-
stdio
<String> | <Array> Child's stdio configuration. (Default: 'pipe')-
stderr
by default will be output to the parent process' stderr unlessstdio
is specified
-
-
env
<Object> Environment key-value pairs -
shell
<String> Shell to execute the command with (Default: '/bin/sh' on UNIX, 'cmd.exe' on Windows, The shell should understand the-c
switch on UNIX or/s /c
on Windows. On Windows, command line parsing should be compatible withcmd.exe
.) -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).) -
timeout
<Number> In milliseconds the maximum amount of time the process is allowed to run. (Default: undefined) -
killSignal
<String> | <Integer> The signal value to be used when the spawned process will be killed. (Default: 'SIGTERM') -
maxBuffer
<Number> largest amount of data (in bytes) allowed on stdout or stderr - if exceeded child process is killed -
encoding
<String> The encoding used for all stdio inputs and outputs. (Default: 'buffer')
-
- Returns: <Buffer> | <String> The stdout from the command
The child_process.execSync()
method is generally identical to child_process.exec()
with the exception that the method will not return until the child process has fully closed. When a timeout has been encountered and killSignal
is sent, the method won't return until the process has completely exited. Note that if the child process intercepts and handles the SIGTERM
signal and doesn't exit, the parent process will wait until the child process has exited.
If the process times out, or has a non-zero exit code, this method will throw. The Error
object will contain the entire result from child_process.spawnSync()
Note: Never pass unsanitised user input to this function. Any input containing shell metacharacters may be used to trigger arbitrary command execution.
child_process.spawnSync(command[, args][, options])
-
command
<String> The command to run -
args
<Array> List of string arguments -
options
<Object>-
cwd
<String> Current working directory of the child process -
input
<String> | <Buffer> The value which will be passed as stdin to the spawned process- supplying this value will override
stdio[0]
- supplying this value will override
-
stdio
<String> | <Array> Child's stdio configuration. (Default: 'pipe') -
env
<Object> Environment key-value pairs -
uid
<Number> Sets the user identity of the process. (See setuid(2).) -
gid
<Number> Sets the group identity of the process. (See setgid(2).) -
timeout
<Number> In milliseconds the maximum amount of time the process is allowed to run. (Default: undefined) -
killSignal
<String> | <Integer> The signal value to be used when the spawned process will be killed. (Default: 'SIGTERM') -
maxBuffer
<Number> largest amount of data (in bytes) allowed on stdout or stderr - if exceeded child process is killed -
encoding
<String> The encoding used for all stdio inputs and outputs. (Default: 'buffer') -
shell
<Boolean> | <String> Iftrue
, runscommand
inside of a shell. Uses '/bin/sh' on UNIX, and 'cmd.exe' on Windows. A different shell can be specified as a string. The shell should understand the-c
switch on UNIX, or/s /c
on Windows. Defaults tofalse
(no shell).
-
- Returns: <Object>
-
pid
<Number> Pid of the child process -
output
<Array> Array of results from stdio output -
stdout
<Buffer> | <String> The contents ofoutput[1]
-
stderr
<Buffer> | <String> The contents ofoutput[2]
-
status
<Number> The exit code of the child process -
signal
<String> The signal used to kill the child process -
error
<Error> The error object if the child process failed or timed out
-
The child_process.spawnSync()
method is generally identical to child_process.spawn()
with the exception that the function will not return until the child process has fully closed. When a timeout has been encountered and killSignal
is sent, the method won't return until the process has completely exited. Note that if the process intercepts and handles the SIGTERM
signal and doesn't exit, the parent process will wait until the child process has exited.
Note: If the shell
option is enabled, do not pass unsanitised user input to this function. Any input containing shell metacharacters may be used to trigger arbitrary command execution.
Class: ChildProcess
Instances of the ChildProcess
class are EventEmitters
that represent spawned child processes.
Instances of ChildProcess
are not intended to be created directly. Rather, use the child_process.spawn()
, child_process.exec()
, child_process.execFile()
, or child_process.fork()
methods to create instances of ChildProcess
.
Event: 'close'
-
code
<Number> the exit code if the child exited on its own. -
signal
<String> the signal by which the child process was terminated.
The 'close'
event is emitted when the stdio streams of a child process have been closed. This is distinct from the 'exit'
event, since multiple processes might share the same stdio streams.
Event: 'disconnect'
The 'disconnect'
event is emitted after calling the ChildProcess.disconnect()
method in the parent or child process. After disconnecting it is no longer possible to send or receive messages, and the ChildProcess.connected
property is false.
Event: 'error'
-
err
<Error> the error.
The 'error'
event is emitted whenever:
- The process could not be spawned, or
- The process could not be killed, or
- Sending a message to the child process failed.
Note that the 'exit'
event may or may not fire after an error has occurred. If you are listening to both the 'exit'
and 'error'
events, it is important to guard against accidentally invoking handler functions multiple times.
See also ChildProcess#kill()
and ChildProcess#send()
.
Event: 'exit'
-
code
<Number> the exit code if the child exited on its own. -
signal
<String> the signal by which the child process was terminated.
The 'exit'
event is emitted after the child process ends. If the process exited, code
is the final exit code of the process, otherwise null
. If the process terminated due to receipt of a signal, signal
is the string name of the signal, otherwise null
. One of the two will always be non-null.
Note that when the 'exit'
event is triggered, child process stdio streams might still be open.
Also, note that Node.js establishes signal handlers for SIGINT
and SIGTERM
and Node.js processes will not terminate immediately due to receipt of those signals. Rather, Node.js will perform a sequence of cleanup actions and then will re-raise the handled signal.
See waitpid(2)
.
Event: 'message'
-
message
<Object> a parsed JSON object or primitive value. -
sendHandle
<Handle> anet.Socket
ornet.Server
object, or undefined.
The 'message'
event is triggered when a child process uses process.send()
to send messages.
subprocess.connected
-
<Boolean> Set to false after
.disconnect
is called
The subprocess.connected
property indicates whether it is still possible to send and receive messages from a child process. When subprocess.connected
is false, it is no longer possible to send or receive messages.
subprocess.disconnect()
Closes the IPC channel between parent and child, allowing the child to exit gracefully once there are no other connections keeping it alive. After calling this method the subprocess.connected
and process.connected
properties in both the parent and child (respectively) will be set to false
, and it will be no longer possible to pass messages between the processes.
The 'disconnect'
event will be emitted when there are no messages in the process of being received. This will most often be triggered immediately after calling subprocess.disconnect()
.
Note that when the child process is a Node.js instance (e.g. spawned using child_process.fork()
), the process.disconnect()
method can be invoked within the child process to close the IPC channel as well.
subprocess.kill([signal])
-
signal
<String>
The subprocess.kill()
methods sends a signal to the child process. If no argument is given, the process will be sent the 'SIGTERM'
signal. See signal(7) for a list of available signals.
const spawn = require('child_process').spawn; const grep = spawn('grep', ['ssh']); grep.on('close', (code, signal) => { console.log( `child process terminated due to receipt of signal ${signal}`); }); // Send SIGHUP to process grep.kill('SIGHUP');
The ChildProcess
object may emit an 'error'
event if the signal cannot be delivered. Sending a signal to a child process that has already exited is not an error but may have unforeseen consequences. Specifically, if the process identifier (PID) has been reassigned to another process, the signal will be delivered to that process instead which can have unexpected results.
Note that while the function is called kill
, the signal delivered to the child process may not actually terminate the process.
See kill(2)
for reference.
Also note: on Linux, child processes of child processes will not be terminated when attempting to kill their parent. This is likely to happen when running a new process in a shell or with use of the shell
option of ChildProcess
, such as in this example:
'use strict'; const spawn = require('child_process').spawn; let subprocess = spawn('sh', ['-c', `node -e "setInterval(() => { console.log(process.pid, 'is alive') }, 500);"` ], { stdio: ['inherit', 'inherit', 'inherit'] }); setTimeout(() => { subprocess.kill(); // does not terminate the node process in the shell }, 2000);
subprocess.killed
-
<boolean> Set to
true
aftersubprocess.kill()
is used to successfully terminate the child process.
The subprocess.killed
property indicates whether the child process was successfully terminated using subprocess.kill()
.
subprocess.pid
- <Number> Integer
Returns the process identifier (PID) of the child process.
Example:
const spawn = require('child_process').spawn; const grep = spawn('grep', ['ssh']); console.log(`Spawned child pid: ${grep.pid}`); grep.stdin.end();
subprocess.send(message[, sendHandle[, options]][, callback])
-
message
<Object> -
sendHandle
<Handle> -
callback
<Function> - Returns: <Boolean>
When an IPC channel has been established between the parent and child ( i.e. when using child_process.fork()
), the subprocess.send()
method can be used to send messages to the child process. When the child process is a Node.js instance, these messages can be received via the process.on('message')
event.
For example, in the parent script:
const cp = require('child_process'); const n = cp.fork(`${__dirname}/sub.js`); n.on('message', (m) => { console.log('PARENT got message:', m); }); n.send({ hello: 'world' });
And then the child script, 'sub.js'
might look like this:
process.on('message', (m) => { console.log('CHILD got message:', m); }); process.send({ foo: 'bar' });
Child Node.js processes will have a process.send()
method of their own that allows the child to send messages back to the parent.
There is a special case when sending a {cmd: 'NODE_foo'}
message. All messages containing a NODE_
prefix in its cmd
property are considered to be reserved for use within Node.js core and will not be emitted in the child's process.on('message')
event. Rather, such messages are emitted using the process.on('internalMessage')
event and are consumed internally by Node.js. Applications should avoid using such messages or listening for 'internalMessage'
events as it is subject to change without notice.
The optional sendHandle
argument that may be passed to subprocess.send()
is for passing a TCP server or socket object to the child process. The child will receive the object as the second argument passed to the callback function registered on the process.on('message')
event. Any data that is received and buffered in the socket will not be sent to the child.
The optional callback
is a function that is invoked after the message is sent but before the child may have received it. The function is called with a single argument: null
on success, or an Error
object on failure.
If no callback
function is provided and the message cannot be sent, an 'error'
event will be emitted by the ChildProcess
object. This can happen, for instance, when the child process has already exited.
subprocess.send()
will return false
if the channel has closed or when the backlog of unsent messages exceeds a threshold that makes it unwise to send more. Otherwise, the method returns true
. The callback
function can be used to implement flow control.
Example: sending a server object
The sendHandle
argument can be used, for instance, to pass the handle of a TCP server object to the child process as illustrated in the example below:
const subprocess = require('child_process').fork('subprocess.js'); // Open up the server object and send the handle. const server = require('net').createServer(); server.on('connection', (socket) => { socket.end('handled by parent'); }); server.listen(1337, () => { subprocess.send('server', server); });
The child would then receive the server object as:
process.on('message', (m, server) => { if (m === 'server') { server.on('connection', (socket) => { socket.end('handled by child'); }); } });
Once the server is now shared between the parent and child, some connections can be handled by the parent and some by the child.
While the example above uses a server created using the net
module, dgram
module servers use exactly the same workflow with the exceptions of listening on a 'message'
event instead of 'connection'
and using server.bind
instead of server.listen
. This is, however, currently only supported on UNIX platforms.
Example: sending a socket object
Similarly, the sendHandler
argument can be used to pass the handle of a socket to the child process. The example below spawns two children that each handle connections with "normal" or "special" priority:
const normal = require('child_process').fork('subprocess.js', ['normal']); const special = require('child_process').fork('subprocess.js', ['special']); // Open up the server and send sockets to child const server = require('net').createServer(); server.on('connection', (socket) => { // If this is special priority if (socket.remoteAddress === '74.125.127.100') { special.send('socket', socket); return; } // This is normal priority normal.send('socket', socket); }); server.listen(1337);
The subprocess.js
would receive the socket handle as the second argument passed to the event callback function:
process.on('message', (m, socket) => { if (m === 'socket') { socket.end(`Request handled with ${process.argv[2]} priority`); } });
Once a socket has been passed to a child, the parent is no longer capable of tracking when the socket is destroyed. To indicate this, the .connections
property becomes null
. It is recommended not to use .maxConnections
when this occurs.
Note: this function uses JSON.stringify()
internally to serialize the message
.
subprocess.stderr
A Readable Stream
that represents the child process's stderr
.
If the child was spawned with stdio[2]
set to anything other than 'pipe'
, then this will be undefined
.
subprocess.stderr
is an alias for subprocess.stdio[2]
. Both properties will refer to the same value.
subprocess.stdin
A Writable Stream
that represents the child process's stdin
.
Note that if a child process waits to read all of its input, the child will not continue until this stream has been closed via end()
.
If the child was spawned with stdio[0]
set to anything other than 'pipe'
, then this will be undefined
.
subprocess.stdin
is an alias for subprocess.stdio[0]
. Both properties will refer to the same value.
subprocess.stdio
A sparse array of pipes to the child process, corresponding with positions in the stdio
option passed to child_process.spawn()
that have been set to the value 'pipe'
. Note that subprocess.stdio[0]
, subprocess.stdio[1]
, and subprocess.stdio[2]
are also available as subprocess.stdin
, subprocess.stdout
, and subprocess.stderr
, respectively.
In the following example, only the child's fd 1
(stdout) is configured as a pipe, so only the parent's subprocess.stdio[1]
is a stream, all other values in the array are null
.
const assert = require('assert'); const fs = require('fs'); const child_process = require('child_process'); const subprocess = child_process.spawn('ls', { stdio: [ 0, // Use parents stdin for child 'pipe', // Pipe child's stdout to parent fs.openSync('err.out', 'w') // Direct child's stderr to a file ] }); assert.equal(subprocess.stdio[0], null); assert.equal(subprocess.stdio[0], subprocess.stdin); assert(subprocess.stdout); assert.equal(subprocess.stdio[1], subprocess.stdout); assert.equal(subprocess.stdio[2], null); assert.equal(subprocess.stdio[2], subprocess.stderr);
subprocess.stdout
A Readable Stream
that represents the child process's stdout
.
If the child was spawned with stdio[1]
set to anything other than 'pipe'
, then this will be undefined
.
subprocess.stdout
is an alias for subprocess.stdio[1]
. Both properties will refer to the same value.
© Joyent, Inc. and other Node contributors
Licensed under the MIT License.
Node.js is a trademark of Joyent, Inc. and is used with its permission.
We are not endorsed by or affiliated with Joyent.
https://nodejs.org/dist/latest-v4.x/docs/api/child_process.html