matplotlib.colors.CenteredNorm
-
class matplotlib.colors.CenteredNorm(vcenter=0, halfrange=None, clip=False)
[source] -
Bases:
matplotlib.colors.Normalize
Normalize symmetrical data around a center (0 by default).
Unlike
TwoSlopeNorm
,CenteredNorm
applies an equal rate of change around the center.Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2 to 4, with 0 as the midpoint, and with equal rates of change around that midpoint.
Parameters: -
vcenterfloat, default: 0
-
The data value that defines
0.5
in the normalization. -
halfrangefloat, optional
-
The range of data values that defines a range of
0.5
in the normalization, so that vcenter - halfrange is0.0
and vcenter + halfrange is1.0
in the normalization. Defaults to the largest absolute difference to vcenter for the values in the dataset.
Examples
This maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above and below 0.0):
>>> import matplotlib.colors as mcolors >>> norm = mcolors.CenteredNorm(halfrange=4.0) >>> data = [-2., 0., 4.] >>> norm(data) array([0.25, 0.5 , 1. ])
-
__call__(self, value, clip=None)
[source] -
Normalize value data in the
[vmin, vmax]
interval into the[0.0, 1.0]
interval and return it.Parameters: - value
-
Data to normalize.
-
clipbool
-
If
None
, defaults toself.clip
(which defaults toFalse
).
Notes
If not already initialized,
self.vmin
andself.vmax
are initialized usingself.autoscale_None(value)
.
-
__init__(self, vcenter=0, halfrange=None, clip=False)
[source] -
Normalize symmetrical data around a center (0 by default).
Unlike
TwoSlopeNorm
,CenteredNorm
applies an equal rate of change around the center.Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2 to 4, with 0 as the midpoint, and with equal rates of change around that midpoint.
Parameters: -
vcenterfloat, default: 0
-
The data value that defines
0.5
in the normalization. -
halfrangefloat, optional
-
The range of data values that defines a range of
0.5
in the normalization, so that vcenter - halfrange is0.0
and vcenter + halfrange is1.0
in the normalization. Defaults to the largest absolute difference to vcenter for the values in the dataset.
Examples
This maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above and below 0.0):
>>> import matplotlib.colors as mcolors >>> norm = mcolors.CenteredNorm(halfrange=4.0) >>> data = [-2., 0., 4.] >>> norm(data) array([0.25, 0.5 , 1. ])
-
-
__module__ = 'matplotlib.colors'
-
__slotnames__ = []
-
autoscale(self, A)
[source] -
Set halfrange to
max(abs(A-vcenter))
, then set vmin and vmax.
-
autoscale_None(self, A)
[source] -
Set vmin and vmax.
-
property halfrange
-
property vcenter
-
Examples using matplotlib.colors.CenteredNorm
© 2012–2021 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.4.1/api/_as_gen/matplotlib.colors.CenteredNorm.html