Numbers
Standard Numeric Types
Abstract number types
Core.Number
Type
Number
Abstract supertype for all number types.
source
Core.Real
Type
Real <: Number
Abstract supertype for all real numbers.
source
Core.AbstractFloat
Type
AbstractFloat <: Real
Abstract supertype for all floating point numbers.
source
Core.Integer
Type
Integer <: Real
Abstract supertype for all integers.
source
Core.Signed
Type
Signed <: Integer
Abstract supertype for all signed integers.
source
Core.Unsigned
Type
Unsigned <: Integer
Abstract supertype for all unsigned integers.
source
Base.AbstractIrrational
Type
AbstractIrrational <: Real
Number type representing an exact irrational value.
sourceConcrete number types
Core.Float16
Type
Float16 <: AbstractFloat
16-bit floating point number type.
source
Core.Float32
Type
Float32 <: AbstractFloat
32-bit floating point number type.
source
Core.Float64
Type
Float64 <: AbstractFloat
64-bit floating point number type.
source
Base.MPFR.BigFloat
Type
BigFloat <: AbstractFloat
Arbitrary precision floating point number type.
source
Core.Bool
Type
Bool <: Integer
Boolean type, containing the values true
and false
.
Core.Int8
Type
Int8 <: Signed
8-bit signed integer type.
source
Core.UInt8
Type
UInt8 <: Unsigned
8-bit unsigned integer type.
source
Core.Int16
Type
Int16 <: Signed
16-bit signed integer type.
source
Core.UInt16
Type
UInt16 <: Unsigned
16-bit unsigned integer type.
source
Core.Int32
Type
Int32 <: Signed
32-bit signed integer type.
source
Core.UInt32
Type
UInt32 <: Unsigned
32-bit unsigned integer type.
source
Core.Int64
Type
Int64 <: Signed
64-bit signed integer type.
source
Core.UInt64
Type
UInt64 <: Unsigned
64-bit unsigned integer type.
source
Core.Int128
Type
Int128 <: Signed
128-bit signed integer type.
source
Core.UInt128
Type
UInt128 <: Unsigned
128-bit unsigned integer type.
source
Base.GMP.BigInt
Type
BigInt <: Signed
Arbitrary precision integer type.
source
Base.Complex
Type
Complex{T<:Real} <: Number
Complex number type with real and imaginary part of type T
.
ComplexF16
, ComplexF32
and ComplexF64
are aliases for Complex{Float16}
, Complex{Float32}
and Complex{Float64}
respectively.
Base.Rational
Type
Rational{T<:Integer} <: Real
Rational number type, with numerator and denominator of type T
. Rationals are checked for overflow.
Base.Irrational
Type
Irrational{sym} <: AbstractIrrational
Number type representing an exact irrational value denoted by the symbol sym
.
Data Formats
Base.digits
Function
digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
Return an array with element type T
(default Int
) of the digits of n
in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indices, such that n == sum([digits[k]*base^(k-1) for k=1:length(digits)])
.
Examples
julia> digits(10, base = 10) 2-element Array{Int64,1}: 0 1 julia> digits(10, base = 2) 4-element Array{Int64,1}: 0 1 0 1 julia> digits(10, base = 2, pad = 6) 6-element Array{Int64,1}: 0 1 0 1 0 0source
Base.digits!
Function
digits!(array, n::Integer; base::Integer = 10)
Fills an array of the digits of n
in the given base. More significant digits are at higher indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2,2,2,2], 10, base = 2) 4-element Array{Int64,1}: 0 1 0 1 julia> digits!([2,2,2,2,2,2], 10, base = 2) 6-element Array{Int64,1}: 0 1 0 1 0 0source
Base.bitstring
Function
bitstring(n)
A string giving the literal bit representation of a number.
Examples
julia> bitstring(4) "0000000000000000000000000000000000000000000000000000000000000100" julia> bitstring(2.2) "0100000000000001100110011001100110011001100110011001100110011010"source
Base.parse
Function
parse(type, str; base)
Parse a string as a number. For Integer
types, a base can be specified (the default is 10). For floating-point types, the string is parsed as a decimal floating-point number. Complex
types are parsed from decimal strings of the form "R±Iim"
as a Complex(R,I)
of the requested type; "i"
or "j"
can also be used instead of "im"
, and "R"
or "Iim"
are also permitted. If the string does not contain a valid number, an error is raised.
parse(Bool, str)
requires at least Julia 1.1.
Examples
julia> parse(Int, "1234") 1234 julia> parse(Int, "1234", base = 5) 194 julia> parse(Int, "afc", base = 16) 2812 julia> parse(Float64, "1.2e-3") 0.0012 julia> parse(Complex{Float64}, "3.2e-1 + 4.5im") 0.32 + 4.5imsource
Base.tryparse
Function
tryparse(type, str; base)
Like parse
, but returns either a value of the requested type, or nothing
if the string does not contain a valid number.
Base.big
Function
big(x)
Convert a number to a maximum precision representation (typically BigInt
or BigFloat
). See BigFloat
for information about some pitfalls with floating-point numbers.
Base.signed
Function
signed(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
source
Base.unsigned
Function
unsigned(x) -> Unsigned
Convert a number to an unsigned integer. If the argument is signed, it is reinterpreted as unsigned without checking for negative values.
Examples
julia> unsigned(-2) 0xfffffffffffffffe julia> unsigned(2) 0x0000000000000002 julia> signed(unsigned(-2)) -2source
Base.float
Method
float(x)
Convert a number or array to a floating point data type.
source
Base.Math.significand
Function
significand(x)
Extract the significand(s)
(a.k.a. mantissa), in binary representation, of a floating-point number. If x
is a non-zero finite number, then the result will be a number of the same type on the interval $[1,2)$. Otherwise x
is returned.
Examples
julia> significand(15.2)/15.2 0.125 julia> significand(15.2)*8 15.2source
Base.Math.exponent
Function
exponent(x) -> Int
Get the exponent of a normalized floating-point number.
source
Base.complex
Method
complex(r, [i])
Convert real numbers or arrays to complex. i
defaults to zero.
Examples
julia> complex(7) 7 + 0im julia> complex([1, 2, 3]) 3-element Array{Complex{Int64},1}: 1 + 0im 2 + 0im 3 + 0imsource
Base.bswap
Function
bswap(n)
Reverse the byte order of n
.
Examples
julia> a = bswap(0x10203040) 0x40302010 julia> bswap(a) 0x10203040 julia> string(1, base = 2) "1" julia> string(bswap(1), base = 2) "100000000000000000000000000000000000000000000000000000000"source
Base.hex2bytes
Function
hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})
Given a string or array s
of ASCII codes for a sequence of hexadecimal digits, returns a Vector{UInt8}
of bytes corresponding to the binary representation: each successive pair of hexadecimal digits in s
gives the value of one byte in the return vector.
The length of s
must be even, and the returned array has half of the length of s
. See also hex2bytes!
for an in-place version, and bytes2hex
for the inverse.
Examples
julia> s = string(12345, base = 16) "3039" julia> hex2bytes(s) 2-element Array{UInt8,1}: 0x30 0x39 julia> a = b"01abEF" 6-element Base.CodeUnits{UInt8,String}: 0x30 0x31 0x61 0x62 0x45 0x46 julia> hex2bytes(a) 3-element Array{UInt8,1}: 0x01 0xab 0xefsource
Base.hex2bytes!
Function
hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})
Convert an array s
of bytes representing a hexadecimal string to its binary representation, similar to hex2bytes
except that the output is written in-place in d
. The length of s
must be exactly twice the length of d
.
Base.bytes2hex
Function
bytes2hex(a::AbstractArray{UInt8}) -> String bytes2hex(io::IO, a::AbstractArray{UInt8})
Convert an array a
of bytes to its hexadecimal string representation, either returning a String
via bytes2hex(a)
or writing the string to an io
stream via bytes2hex(io, a)
. The hexadecimal characters are all lowercase.
Examples
julia> a = string(12345, base = 16) "3039" julia> b = hex2bytes(a) 2-element Array{UInt8,1}: 0x30 0x39 julia> bytes2hex(b) "3039"source
General Number Functions and Constants
Base.one
Function
one(x) one(T::type)
Return a multiplicative identity for x
: a value such that one(x)*x == x*one(x) == x
. Alternatively one(T)
can take a type T
, in which case one
returns a multiplicative identity for any x
of type T
.
If possible, one(x)
returns a value of the same type as x
, and one(T)
returns a value of type T
. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case, one(x)
should return an identity value of the same precision (and shape, for matrices) as x
.
If you want a quantity that is of the same type as x
, or of type T
, even if x
is dimensionful, use oneunit
instead.
Examples
julia> one(3.7) 1.0 julia> one(Int) 1 julia> import Dates; one(Dates.Day(1)) 1source
Base.oneunit
Function
oneunit(x::T) oneunit(T::Type)
Returns T(one(x))
, where T
is either the type of the argument or (if a type is passed) the argument. This differs from one
for dimensionful quantities: one
is dimensionless (a multiplicative identity) while oneunit
is dimensionful (of the same type as x
, or of type T
).
Examples
julia> oneunit(3.7) 1.0 julia> import Dates; oneunit(Dates.Day) 1 daysource
Base.zero
Function
zero(x)
Get the additive identity element for the type of x
(x
can also specify the type itself).
Examples
julia> zero(1) 0 julia> zero(big"2.0") 0.0 julia> zero(rand(2,2)) 2×2 Array{Float64,2}: 0.0 0.0 0.0 0.0source
Base.im
Constant
im
The imaginary unit.
Examples
julia> im * im -1 + 0imsource
Base.MathConstants.pi
Constant
π pi
The constant pi.
Examples
julia> pi π = 3.1415926535897...source
Base.MathConstants.ℯ
Constant
ℯ e
The constant ℯ.
Examples
julia> ℯ ℯ = 2.7182818284590...source
Base.MathConstants.catalan
Constant
catalan
Catalan's constant.
Examples
julia> Base.MathConstants.catalan catalan = 0.9159655941772...source
Base.MathConstants.eulergamma
Constant
γ eulergamma
Euler's constant.
Examples
julia> Base.MathConstants.eulergamma γ = 0.5772156649015...source
Base.MathConstants.golden
Constant
φ golden
The golden ratio.
Examples
julia> Base.MathConstants.golden φ = 1.6180339887498...source
Base.Inf
Constant
Inf, Inf64
Positive infinity of type Float64
.
Base.Inf32
Constant
Inf32
Positive infinity of type Float32
.
Base.Inf16
Constant
Inf16
Positive infinity of type Float16
.
Base.NaN
Constant
NaN, NaN64
A not-a-number value of type Float64
.
Base.NaN32
Constant
NaN32
A not-a-number value of type Float32
.
Base.NaN16
Constant
NaN16
A not-a-number value of type Float16
.
Base.issubnormal
Function
issubnormal(f) -> Bool
Test whether a floating point number is subnormal.
source
Base.isfinite
Function
isfinite(f) -> Bool
Test whether a number is finite.
Examples
julia> isfinite(5) true julia> isfinite(NaN32) falsesource
Base.isinf
Function
isinf(f) -> Bool
Test whether a number is infinite.
source
Base.isnan
Function
isnan(f) -> Bool
Test whether a floating point number is not a number (NaN).
source
Base.iszero
Function
iszero(x)
Return true
if x == zero(x)
; if x
is an array, this checks whether all of the elements of x
are zero.
Examples
julia> iszero(0.0) true julia> iszero([1, 9, 0]) false julia> iszero([false, 0, 0]) truesource
Base.isone
Function
isone(x)
Return true
if x == one(x)
; if x
is an array, this checks whether x
is an identity matrix.
Examples
julia> isone(1.0) true julia> isone([1 0; 0 2]) false julia> isone([1 0; 0 true]) truesource
Base.nextfloat
Function
nextfloat(x::AbstractFloat, n::Integer)
The result of n
iterative applications of nextfloat
to x
if n >= 0
, or -n
applications of prevfloat
if n < 0
.
nextfloat(x::AbstractFloat)
Return the smallest floating point number y
of the same type as x
such x < y
. If no such y
exists (e.g. if x
is Inf
or NaN
), then return x
.
Base.prevfloat
Function
prevfloat(x::AbstractFloat, n::Integer)
The result of n
iterative applications of prevfloat
to x
if n >= 0
, or -n
applications of nextfloat
if n < 0
.
prevfloat(x::AbstractFloat)
Return the largest floating point number y
of the same type as x
such y < x
. If no such y
exists (e.g. if x
is -Inf
or NaN
), then return x
.
Base.isinteger
Function
isinteger(x) -> Bool
Test whether x
is numerically equal to some integer.
Examples
julia> isinteger(4.0) truesource
Base.isreal
Function
isreal(x) -> Bool
Test whether x
or all its elements are numerically equal to some real number including infinities and NaNs. isreal(x)
is true if isequal(x, real(x))
is true.
Examples
julia> isreal(5.) true julia> isreal(Inf + 0im) true julia> isreal([4.; complex(0,1)]) falsesource
Core.Float32
Method
Float32(x [, mode::RoundingMode])
Create a Float32
from x
. If x
is not exactly representable then mode
determines how x
is rounded.
Examples
julia> Float32(1/3, RoundDown) 0.3333333f0 julia> Float32(1/3, RoundUp) 0.33333334f0
See RoundingMode
for available rounding modes.
Core.Float64
Method
Float64(x [, mode::RoundingMode])
Create a Float64
from x
. If x
is not exactly representable then mode
determines how x
is rounded.
Examples
julia> Float64(pi, RoundDown) 3.141592653589793 julia> Float64(pi, RoundUp) 3.1415926535897936
See RoundingMode
for available rounding modes.
Base.Rounding.rounding
Function
rounding(T)
Get the current floating point rounding mode for type T
, controlling the rounding of basic arithmetic functions (+
, -
, *
, /
and sqrt
) and type conversion.
See RoundingMode
for available modes.
Base.Rounding.setrounding
Method
setrounding(T, mode)
Set the rounding mode of floating point type T
, controlling the rounding of basic arithmetic functions (+
, -
, *
, /
and sqrt
) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default RoundNearest
.
Note that this is currently only supported for T == BigFloat
.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
Base.Rounding.setrounding
Method
setrounding(f::Function, T, mode)
Change the rounding mode of floating point type T
for the duration of f
. It is logically equivalent to:
old = rounding(T) setrounding(T, mode) f() setrounding(T, old)
See RoundingMode
for available rounding modes.
Base.Rounding.get_zero_subnormals
Function
get_zero_subnormals() -> Bool
Return false
if operations on subnormal floating-point values ("denormals") obey rules for IEEE arithmetic, and true
if they might be converted to zeros.
This function only affects the current thread.
Base.Rounding.set_zero_subnormals
Function
set_zero_subnormals(yes::Bool) -> Bool
If yes
is false
, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values ("denormals"). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns true
unless yes==true
but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true)
can speed up some computations on some hardware. However, it can break identities such as (x-y==0) == (x==y)
.
This function only affects the current thread.
Integers
Base.count_ones
Function
count_ones(x::Integer) -> Integer
Number of ones in the binary representation of x
.
Examples
julia> count_ones(7) 3source
Base.count_zeros
Function
count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of x
.
Examples
julia> count_zeros(Int32(2 ^ 16 - 1)) 16source
Base.leading_zeros
Function
leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of x
.
Examples
julia> leading_zeros(Int32(1)) 31source
Base.leading_ones
Function
leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of x
.
Examples
julia> leading_ones(UInt32(2 ^ 32 - 2)) 31source
Base.trailing_zeros
Function
trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of x
.
Examples
julia> trailing_zeros(2) 1source
Base.trailing_ones
Function
trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of x
.
Examples
julia> trailing_ones(3) 2source
Base.isodd
Function
isodd(x::Integer) -> Bool
Return true
if x
is odd (that is, not divisible by 2), and false
otherwise.
Examples
julia> isodd(9) true julia> isodd(10) falsesource
Base.iseven
Function
iseven(x::Integer) -> Bool
Return true
is x
is even (that is, divisible by 2), and false
otherwise.
Examples
julia> iseven(9) false julia> iseven(10) truesource
Core.@int128_str
Macro
@int128_str str @int128_str(str)
@int128_str
parses a string into a Int128 Throws an ArgumentError
if the string is not a valid integer
Core.@uint128_str
Macro
@uint128_str str @uint128_str(str)
@uint128_str
parses a string into a UInt128 Throws an ArgumentError
if the string is not a valid integer
BigFloats and BigInts
The BigFloat
and BigInt
types implements arbitrary-precision floating point and integer arithmetic, respectively. For BigFloat
the GNU MPFR library is used, and for BigInt
the GNU Multiple Precision Arithmetic Library (GMP) is used.
Base.MPFR.BigFloat
Method
BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])
Create an arbitrary precision floating point number from x
, with precision precision
. The rounding
argument specifies the direction in which the result should be rounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.
BigFloat(x::Real)
is the same as convert(BigFloat,x)
, except if x
itself is already BigFloat
, in which case it will return a value with the precision set to the current global precision; convert
will always return x
.
BigFloat(x::AbstractString)
is identical to parse
. This is provided for convenience since decimal literals are converted to Float64
when parsed, so BigFloat(2.1)
may not yield what you expect.
precision
as a keyword argument requires at least Julia 1.1. In Julia 1.0 precision
is the second positional argument (BigFloat(x, precision)
).
Examples
julia> BigFloat(2.1) # 2.1 here is a Float64 2.100000000000000088817841970012523233890533447265625 julia> BigFloat("2.1") # the closest BigFloat to 2.1 2.099999999999999999999999999999999999999999999999999999999999999999999999999986 julia> BigFloat("2.1", RoundUp) 2.100000000000000000000000000000000000000000000000000000000000000000000000000021 julia> BigFloat("2.1", RoundUp, precision=128) 2.100000000000000000000000000000000000007
See also
@big_str
-
rounding
andsetrounding
-
precision
andsetprecision
Base.precision
Function
precision(num::AbstractFloat)
Get the precision of a floating point number, as defined by the effective number of bits in the mantissa.
source
Base.precision
Method
precision(BigFloat)
Get the precision (in bits) currently used for BigFloat
arithmetic.
Base.MPFR.setprecision
Function
setprecision([T=BigFloat,] precision::Int)
Set the precision (in bits) to be used for T
arithmetic.
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
setprecision(f::Function, [T=BigFloat,] precision::Integer)
Change the T
arithmetic precision (in bits) for the duration of f
. It is logically equivalent to:
old = precision(BigFloat) setprecision(BigFloat, precision) f() setprecision(BigFloat, old)
Often used as setprecision(T, precision) do ... end
Note: nextfloat()
, prevfloat()
do not use the precision mentioned by setprecision
Base.GMP.BigInt
Method
BigInt(x)
Create an arbitrary precision integer. x
may be an Int
(or anything that can be converted to an Int
). The usual mathematical operators are defined for this type, and results are promoted to a BigInt
.
Instances can be constructed from strings via parse
, or using the big
string literal.
Examples
julia> parse(BigInt, "42") 42 julia> big"313" 313source
Core.@big_str
Macro
@big_str str @big_str(str)
Parse a string into a BigInt
or BigFloat
, and throw an ArgumentError
if the string is not a valid number. For integers _
is allowed in the string as a separator.
Examples
julia> big"123_456" 123456 julia> big"7891.5" 7891.5source
© 2009–2020 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/v1.3.1/base/numbers/