Mathematics
Mathematical Operators
Base.:-
Method
-(x)
Unary minus operator.
Examples
julia> -1 -1 julia> -(2) -2 julia> -[1 2; 3 4] 2×2 Array{Int64,2}: -1 -2 -3 -4source
Base.:+
Function
dt::Date + t::Time -> DateTime
The addition of a Date
with a Time
produces a DateTime
. The hour, minute, second, and millisecond parts of the Time
are used along with the year, month, and day of the Date
to create the new DateTime
. Non-zero microseconds or nanoseconds in the Time
type will result in an InexactError
being thrown.
+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4 25 julia> +(1, 20, 4) 25source
Base.:-
Method
-(x, y)
Subtraction operator.
Examples
julia> 2 - 3 -1 julia> -(2, 4.5) -2.5source
Base.:*
Method
*(x, y...)
Multiplication operator. x*y*z*...
calls this function with all arguments, i.e. *(x, y, z, ...)
.
Examples
julia> 2 * 7 * 8 112 julia> *(2, 7, 8) 112source
Base.:/
Function
/(x, y)
Right division operator: multiplication of x
by the inverse of y
on the right. Gives floating-point results for integer arguments.
Examples
julia> 1/2 0.5 julia> 4/2 2.0 julia> 4.5/2 2.25source
Base.:\
Method
\(x, y)
Left division operator: multiplication of y
by the inverse of x
on the left. Gives floating-point results for integer arguments.
Examples
julia> 3 \ 6 2.0 julia> inv(3) * 6 2.0 julia> A = [4 3; 2 1]; x = [5, 6]; julia> A \ x 2-element Array{Float64,1}: 6.5 -7.0 julia> inv(A) * x 2-element Array{Float64,1}: 6.5 -7.0source
Base.:^
Method
^(x, y)
Exponentiation operator. If x
is a matrix, computes matrix exponentiation.
If y
is an Int
literal (e.g. 2
in x^2
or -3
in x^-3
), the Julia code x^y
is transformed by the compiler to Base.literal_pow(^, x, Val(y))
, to enable compile-time specialization on the value of the exponent. (As a default fallback we have Base.literal_pow(^, x, Val(y)) = ^(x,y)
, where usually ^ == Base.^
unless ^
has been defined in the calling namespace.)
julia> 3^5 243 julia> A = [1 2; 3 4] 2×2 Array{Int64,2}: 1 2 3 4 julia> A^3 2×2 Array{Int64,2}: 37 54 81 118source
Base.fma
Function
fma(x, y, z)
Computes x*y+z
without rounding the intermediate result x*y
. On some systems this is significantly more expensive than x*y+z
. fma
is used to improve accuracy in certain algorithms. See muladd
.
Base.muladd
Function
muladd(x, y, z)
Combined multiply-add: computes x*y+z
, but allowing the add and multiply to be merged with each other or with surrounding operations for performance. For example, this may be implemented as an fma
if the hardware supports it efficiently. The result can be different on different machines and can also be different on the same machine due to constant propagation or other optimizations. See fma
.
Examples
julia> muladd(3, 2, 1) 7 julia> 3 * 2 + 1 7source
Base.inv
Method
inv(x)
Return the multiplicative inverse of x
, such that x*inv(x)
or inv(x)*x
yields one(x)
(the multiplicative identity) up to roundoff errors.
If x
is a number, this is essentially the same as one(x)/x
, but for some types inv(x)
may be slightly more efficient.
Examples
julia> inv(2) 0.5 julia> inv(1 + 2im) 0.2 - 0.4im julia> inv(1 + 2im) * (1 + 2im) 1.0 + 0.0im julia> inv(2//3) 3//2source
Base.div
Function
div(x, y) ÷(x, y)
The quotient from Euclidean division. Computes x/y
, truncated to an integer.
Examples
julia> 9 ÷ 4 2 julia> -5 ÷ 3 -1source
Base.fld
Function
fld(x, y)
Largest integer less than or equal to x/y
.
Examples
julia> fld(7.3,5.5) 1.0source
Base.cld
Function
cld(x, y)
Smallest integer larger than or equal to x/y
.
Examples
julia> cld(5.5,2.2) 3.0source
Base.mod
Function
mod(x, y) rem(x, y, RoundDown)
The reduction of x
modulo y
, or equivalently, the remainder of x
after floored division by y
, i.e.
x - y*fld(x,y)
if computed without intermediate rounding.
The result will have the same sign as y
, and magnitude less than abs(y)
(with some exceptions, see note below).
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to y
, then it may be rounded to y
.
julia> mod(8, 3) 2 julia> mod(9, 3) 0 julia> mod(8.9, 3) 2.9000000000000004 julia> mod(eps(), 3) 2.220446049250313e-16 julia> mod(-eps(), 3) 3.0source
rem(x::Integer, T::Type{<:Integer}) -> T mod(x::Integer, T::Type{<:Integer}) -> T %(x::Integer, T::Type{<:Integer}) -> T
Find y::T
such that x
≡ y
(mod n), where n is the number of integers representable in T
, and y
is an integer in [typemin(T),typemax(T)]
. If T
can represent any integer (e.g. T == BigInt
), then this operation corresponds to a conversion to T
.
Examples
julia> 129 % Int8 -127source
Base.rem
Function
rem(x, y) %(x, y)
Remainder from Euclidean division, returning a value of the same sign as x
, and smaller in magnitude than y
. This value is always exact.
Examples
julia> x = 15; y = 4; julia> x % y 3 julia> x == div(x, y) * y + rem(x, y) truesource
Base.Math.rem2pi
Function
rem2pi(x, r::RoundingMode)
Compute the remainder of x
after integer division by 2π
, with the quotient rounded according to the rounding mode r
. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result than rem(x,2π,r)
if
r == RoundNearest
, then the result is in the interval $[-π, π]$. This will generally be the most accurate result. See alsoRoundNearest
.if
r == RoundToZero
, then the result is in the interval $[0, 2π]$ ifx
is positive,. or $[-2π, 0]$ otherwise. See alsoRoundToZero
.if
r == RoundDown
, then the result is in the interval $[0, 2π]$. See alsoRoundDown
.if
r == RoundUp
, then the result is in the interval $[-2π, 0]$. See alsoRoundUp
.
Examples
julia> rem2pi(7pi/4, RoundNearest) -0.7853981633974485 julia> rem2pi(7pi/4, RoundDown) 5.497787143782138source
Base.Math.mod2pi
Function
mod2pi(x)
Modulus after division by 2π
, returning in the range $[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact 2π
, and is therefore not exactly the same as mod(x,2π)
, which would compute the modulus of x
relative to division by the floating-point number 2π
.
Examples
julia> mod2pi(9*pi/4) 0.7853981633974481source
Base.divrem
Function
divrem(x, y)
The quotient and remainder from Euclidean division. Equivalent to (div(x,y), rem(x,y))
or (x÷y, x%y)
.
Examples
julia> divrem(3,7) (0, 3) julia> divrem(7,3) (2, 1)source
Base.fldmod
Function
fldmod(x, y)
The floored quotient and modulus after division. Equivalent to (fld(x,y), mod(x,y))
.
Base.fld1
Function
fld1(x, y)
Flooring division, returning a value consistent with mod1(x,y)
Examples
julia> x = 15; y = 4; julia> fld1(x, y) 4 julia> x == fld(x, y) * y + mod(x, y) true julia> x == (fld1(x, y) - 1) * y + mod1(x, y) truesource
Base.mod1
Function
mod1(x, y)
Modulus after flooring division, returning a value r
such that mod(r, y) == mod(x, y)
in the range $(0, y]$ for positive y
and in the range $[y,0)$ for negative y
.
Examples
julia> mod1(4, 2) 2 julia> mod1(4, 3) 1source
Base.fldmod1
Function
fldmod1(x, y)
Return (fld1(x,y), mod1(x,y))
.
Base.://
Function
//(num, den)
Divide two integers or rational numbers, giving a Rational
result.
Examples
julia> 3 // 5 3//5 julia> (3 // 5) // (2 // 1) 3//10source
Base.rationalize
Function
rationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point number x
as a Rational
number with components of the given integer type. The result will differ from x
by no more than tol
.
Examples
julia> rationalize(5.6) 28//5 julia> a = rationalize(BigInt, 10.3) 103//10 julia> typeof(numerator(a)) BigIntsource
Base.numerator
Function
numerator(x)
Numerator of the rational representation of x
.
Examples
julia> numerator(2//3) 2 julia> numerator(4) 4source
Base.denominator
Function
denominator(x)
Denominator of the rational representation of x
.
Examples
julia> denominator(2//3) 3 julia> denominator(4) 1source
Base.:<<
Function
<<(x, n)
Left bit shift operator, x << n
. For n >= 0
, the result is x
shifted left by n
bits, filling with 0
s. This is equivalent to x * 2^n
. For n < 0
, this is equivalent to x >> -n
.
Examples
julia> Int8(3) << 2 12 julia> bitstring(Int8(3)) "00000011" julia> bitstring(Int8(12)) "00001100"source
<<(B::BitVector, n) -> BitVector
Left bit shift operator, B << n
. For n >= 0
, the result is B
with elements shifted n
positions backwards, filling with false
values. If n < 0
, elements are shifted forwards. Equivalent to B >> -n
.
Examples
julia> B = BitVector([true, false, true, false, false]) 5-element BitArray{1}: true false true false false julia> B << 1 5-element BitArray{1}: false true false false false julia> B << -1 5-element BitArray{1}: false true false true falsesource
Base.:>>
Function
>>(x, n)
Right bit shift operator, x >> n
. For n >= 0
, the result is x
shifted right by n
bits, where n >= 0
, filling with 0
s if x >= 0
, 1
s if x < 0
, preserving the sign of x
. This is equivalent to fld(x, 2^n)
. For n < 0
, this is equivalent to x << -n
.
Examples
julia> Int8(13) >> 2 3 julia> bitstring(Int8(13)) "00001101" julia> bitstring(Int8(3)) "00000011" julia> Int8(-14) >> 2 -4 julia> bitstring(Int8(-14)) "11110010" julia> bitstring(Int8(-4)) "11111100"source
>>(B::BitVector, n) -> BitVector
Right bit shift operator, B >> n
. For n >= 0
, the result is B
with elements shifted n
positions forward, filling with false
values. If n < 0
, elements are shifted backwards. Equivalent to B << -n
.
Examples
julia> B = BitVector([true, false, true, false, false]) 5-element BitArray{1}: true false true false false julia> B >> 1 5-element BitArray{1}: false true false true false julia> B >> -1 5-element BitArray{1}: false true false false falsesource
Base.:>>>
Function
>>>(x, n)
Unsigned right bit shift operator, x >>> n
. For n >= 0
, the result is x
shifted right by n
bits, where n >= 0
, filling with 0
s. For n < 0
, this is equivalent to x << -n
.
For Unsigned
integer types, this is equivalent to >>
. For Signed
integer types, this is equivalent to signed(unsigned(x) >> n)
.
Examples
julia> Int8(-14) >>> 2 60 julia> bitstring(Int8(-14)) "11110010" julia> bitstring(Int8(60)) "00111100"
BigInt
s are treated as if having infinite size, so no filling is required and this is equivalent to >>
.
>>>(B::BitVector, n) -> BitVector
Unsigned right bitshift operator, B >>> n
. Equivalent to B >> n
. See >>
for details and examples.
Base.::
Function
(:)(I::CartesianIndex, J::CartesianIndex)
Construct CartesianIndices
from two CartesianIndex
.
This method requires at least Julia 1.1.
Examples
julia> I = CartesianIndex(2,1); julia> J = CartesianIndex(3,3); julia> I:J 2×3 CartesianIndices{2,Tuple{UnitRange{Int64},UnitRange{Int64}}}: CartesianIndex(2, 1) CartesianIndex(2, 2) CartesianIndex(2, 3) CartesianIndex(3, 1) CartesianIndex(3, 2) CartesianIndex(3, 3)source
(:)(start, [step], stop)
Range operator. a:b
constructs a range from a
to b
with a step size of 1 (a UnitRange
) , and a:s:b
is similar but uses a step size of s
(a StepRange
).
:
is also used in indexing to select whole dimensions.
Base.range
Function
range(start[, stop]; length, stop, step=1)
Given a starting value, construct a range either by length or from start
to stop
, optionally with a given step (defaults to 1, a UnitRange
). One of length
or stop
is required. If length
, stop
, and step
are all specified, they must agree.
If length
and stop
are provided and step
is not, the step size will be computed automatically such that there are length
linearly spaced elements in the range (a LinRange
).
If step
and stop
are provided and length
is not, the overall range length will be computed automatically such that the elements are step
spaced (a StepRange
).
stop
may be specified as either a positional or keyword argument.
stop
as a positional argument requires at least Julia 1.1.
Examples
julia> range(1, length=100) 1:100 julia> range(1, stop=100) 1:100 julia> range(1, step=5, length=100) 1:5:496 julia> range(1, step=5, stop=100) 1:5:96 julia> range(1, 10, length=101) 1.0:0.09:10.0 julia> range(1, 100, step=5) 1:5:96source
Base.OneTo
Type
Base.OneTo(n)
Define an AbstractUnitRange
that behaves like 1:n
, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
Base.StepRangeLen
Type
StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1]) where {T,R,S} StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}
A range r
where r[i]
produces values of type T
(in the second form, T
is deduced automatically), parameterized by a ref
erence value, a step
, and the len
gth. By default ref
is the starting value r[1]
, but alternatively you can supply it as the value of r[offset]
for some other index 1 <= offset <= len
. In conjunction with TwicePrecision
this can be used to implement ranges that are free of roundoff error.
Base.:==
Function
==(x, y)
Generic equality operator. Falls back to ===
. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding. For collections, ==
is generally called recursively on all contents, though other properties (like the shape for arrays) may also be taken into account.
This operator follows IEEE semantics for floating-point numbers: 0.0 == -0.0
and NaN != NaN
.
The result is of type Bool
, except when one of the operands is missing
, in which case missing
is returned (three-valued logic). For collections, missing
is returned if at least one of the operands contains a missing
value and all non-missing values are equal. Use isequal
or ===
to always get a Bool
result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
isequal
falls back to ==
, so new methods of ==
will be used by the Dict
type to compare keys. If your type will be used as a dictionary key, it should therefore also implement hash
.
==(x)
Create a function that compares its argument to x
using ==
, i.e. a function equivalent to y -> y == x
.
The returned function is of type Base.Fix2{typeof(==)}
, which can be used to implement specialized methods.
==(a::AbstractString, b::AbstractString) -> Bool
Test whether two strings are equal character by character (technically, Unicode code point by code point).
Examples
julia> "abc" == "abc" true julia> "abc" == "αβγ" falsesource
Base.:!=
Function
!=(x, y) ≠(x,y)
Not-equals comparison operator. Always gives the opposite answer as ==
.
Implementation
New types should generally not implement this, and rely on the fallback definition !=(x,y) = !(x==y)
instead.
Examples
julia> 3 != 2 true julia> "foo" ≠ "foo" falsesource
Base.:!==
Function
!==(x, y) ≢(x,y)
Always gives the opposite answer as ===
.
Examples
julia> a = [1, 2]; b = [1, 2]; julia> a ≢ b true julia> a ≢ a falsesource
Base.:<
Function
<(x, y)
Less-than comparison operator. Falls back to isless
. Because of the behavior of floating-point NaN values, this operator implements a partial order.
Implementation
New numeric types with a canonical partial order should implement this function for two arguments of the new type. Types with a canonical total order should implement isless
instead. (x < y) | (x == y)
Examples
julia> 'a' < 'b' true julia> "abc" < "abd" true julia> 5 < 3 falsesource
Base.:<=
Function
<=(x, y) ≤(x,y)
Less-than-or-equals comparison operator. Falls back to (x < y) | (x == y)
.
Examples
julia> 'a' <= 'b' true julia> 7 ≤ 7 ≤ 9 true julia> "abc" ≤ "abc" true julia> 5 <= 3 falsesource
Base.:>
Function
>(x, y)
Greater-than comparison operator. Falls back to y < x
.
Implementation
Generally, new types should implement <
instead of this function, and rely on the fallback definition >(x, y) = y < x
.
Examples
julia> 'a' > 'b' false julia> 7 > 3 > 1 true julia> "abc" > "abd" false julia> 5 > 3 truesource
Base.:>=
Function
>=(x, y) ≥(x,y)
Greater-than-or-equals comparison operator. Falls back to y <= x
.
Examples
julia> 'a' >= 'b' false julia> 7 ≥ 7 ≥ 3 true julia> "abc" ≥ "abc" true julia> 5 >= 3 truesource
Base.cmp
Function
cmp(x,y)
Return -1, 0, or 1 depending on whether x
is less than, equal to, or greater than y
, respectively. Uses the total order implemented by isless
.
Examples
julia> cmp(1, 2) -1 julia> cmp(2, 1) 1 julia> cmp(2+im, 3-im) ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64}) [...]source
cmp(<, x, y)
Return -1, 0, or 1 depending on whether x
is less than, equal to, or greater than y
, respectively. The first argument specifies a less-than comparison function to use.
cmp(a::AbstractString, b::AbstractString) -> Int
Compare two strings. Return 0
if both strings have the same length and the character at each index is the same in both strings. Return -1
if a
is a prefix of b
, or if a
comes before b
in alphabetical order. Return 1
if b
is a prefix of a
, or if b
comes before a
in alphabetical order (technically, lexicographical order by Unicode code points).
Examples
julia> cmp("abc", "abc") 0 julia> cmp("ab", "abc") -1 julia> cmp("abc", "ab") 1 julia> cmp("ab", "ac") -1 julia> cmp("ac", "ab") 1 julia> cmp("α", "a") 1 julia> cmp("b", "β") -1source
Base.:~
Function
~(x)
Bitwise not.
Examples
julia> ~4 -5 julia> ~10 -11 julia> ~true falsesource
Base.:&
Function
&(x, y)
Bitwise and. Implements three-valued logic, returning missing
if one operand is missing
and the other is true
.
Examples
julia> 4 & 10 0 julia> 4 & 12 4 julia> true & missing missing julia> false & missing falsesource
Base.:|
Function
|(x, y)
Bitwise or. Implements three-valued logic, returning missing
if one operand is missing
and the other is false
.
Examples
julia> 4 | 10 14 julia> 4 | 1 5 julia> true | missing true julia> false | missing missingsource
Base.xor
Function
xor(x, y) ⊻(x, y)
Bitwise exclusive or of x
and y
. Implements three-valued logic, returning missing
if one of the arguments is missing
.
The infix operation a ⊻ b
is a synonym for xor(a,b)
, and ⊻
can be typed by tab-completing \xor
or \veebar
in the Julia REPL.
Examples
julia> xor(true, false) true julia> xor(true, true) false julia> xor(true, missing) missing julia> false ⊻ false false julia> [true; true; false] .⊻ [true; false; false] 3-element BitArray{1}: false true falsesource
Base.:!
Function
!(x)
Boolean not. Implements three-valued logic, returning missing
if x
is missing
.
Examples
julia> !true false julia> !false true julia> !missing missing julia> .![true false true] 1×3 BitArray{2}: false true falsesource
!f::Function
Predicate function negation: when the argument of !
is a function, it returns a function which computes the boolean negation of f
.
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε" "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε" julia> filter(isletter, str) "εδxyδfxfyε" julia> filter(!isletter, str) "∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "source
&&
Keyword
x && y
Short-circuiting boolean AND.
source
||
Keyword
x || y
Short-circuiting boolean OR.
sourceMathematical Functions
Base.isapprox
Function
isapprox(x, y; rtol::Real=atol>0 ? 0 : √eps, atol::Real=0, nans::Bool=false, norm::Function)
Inexact equality comparison: true
if norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))
. The default atol
is zero and the default rtol
depends on the types of x
and y
. The keyword argument nans
determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an atol > 0
is not specified, rtol
defaults to the square root of eps
of the type of x
or y
, whichever is bigger (least precise). This corresponds to requiring equality of about half of the significand digits. Otherwise, e.g. for integer arguments or if an atol > 0
is supplied, rtol
defaults to zero.
x
and y
may also be arrays of numbers, in which case norm
defaults to the usual norm
function in LinearAlgebra, but may be changed by passing a norm::Function
keyword argument. (For numbers, norm
is the same thing as abs
.) When x
and y
are arrays, if norm(x-y)
is not finite (i.e. ±Inf
or NaN
), the comparison falls back to checking whether all elements of x
and y
are approximately equal component-wise.
The binary operator ≈
is equivalent to isapprox
with the default arguments, and x ≉ y
is equivalent to !isapprox(x,y)
.
Note that x ≈ 0
(i.e., comparing to zero with the default tolerances) is equivalent to x == 0
since the default atol
is 0
. In such cases, you should either supply an appropriate atol
(or use norm(x) ≤ atol
) or rearrange your code (e.g. use x ≈ y
rather than x - y ≈ 0
). It is not possible to pick a nonzero atol
automatically because it depends on the overall scaling (the "units") of your problem: for example, in x - y ≈ 0
, atol=1e-9
is an absurdly small tolerance if x
is the radius of the Earth in meters, but an absurdly large tolerance if x
is the radius of a Hydrogen atom in meters.
Examples
julia> 0.1 ≈ (0.1 - 1e-10) true julia> isapprox(10, 11; atol = 2) true julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) true julia> 1e-10 ≈ 0 false julia> isapprox(1e-10, 0, atol=1e-8) truesource
Base.sin
Method
sin(x)
Compute sine of x
, where x
is in radians.
Base.cos
Method
cos(x)
Compute cosine of x
, where x
is in radians.
Base.Math.sincos
Method
sincos(x)
Simultaneously compute the sine and cosine of x
, where the x
is in radians.
Base.tan
Method
tan(x)
Compute tangent of x
, where x
is in radians.
Base.Math.sind
Function
sind(x)
Compute sine of x
, where x
is in degrees.
Base.Math.cosd
Function
cosd(x)
Compute cosine of x
, where x
is in degrees.
Base.Math.tand
Function
tand(x)
Compute tangent of x
, where x
is in degrees.
Base.Math.sinpi
Function
sinpi(x)
Compute $\sin(\pi x)$ more accurately than sin(pi*x)
, especially for large x
.
Base.Math.cospi
Function
cospi(x)
Compute $\cos(\pi x)$ more accurately than cos(pi*x)
, especially for large x
.
Base.sinh
Method
sinh(x)
Compute hyperbolic sine of x
.
Base.cosh
Method
cosh(x)
Compute hyperbolic cosine of x
.
Base.tanh
Method
tanh(x)
Compute hyperbolic tangent of x
.
Base.asin
Method
asin(x)
Compute the inverse sine of x
, where the output is in radians.
Base.acos
Method
acos(x)
Compute the inverse cosine of x
, where the output is in radians
Base.atan
Method
atan(y) atan(y, x)
Compute the inverse tangent of y
or y/x
, respectively.
For one argument, this is the angle in radians between the positive x-axis and the point (1, y), returning a value in the interval $[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positive x-axis and the point (x, y), returning a value in the interval $[-\pi, \pi]$. This corresponds to a standard atan2
function.
Base.Math.asind
Function
asind(x)
Compute the inverse sine of x
, where the output is in degrees.
Base.Math.acosd
Function
acosd(x)
Compute the inverse cosine of x
, where the output is in degrees.
Base.Math.atand
Function
atand(y) atand(y,x)
Compute the inverse tangent of y
or y/x
, respectively, where the output is in degrees.
Base.Math.sec
Method
sec(x)
Compute the secant of x
, where x
is in radians.
Base.Math.csc
Method
csc(x)
Compute the cosecant of x
, where x
is in radians.
Base.Math.cot
Method
cot(x)
Compute the cotangent of x
, where x
is in radians.
Base.Math.secd
Function
secd(x)
Compute the secant of x
, where x
is in degrees.
Base.Math.cscd
Function
cscd(x)
Compute the cosecant of x
, where x
is in degrees.
Base.Math.cotd
Function
cotd(x)
Compute the cotangent of x
, where x
is in degrees.
Base.Math.asec
Method
asec(x)
Compute the inverse secant of x
, where the output is in radians.
Base.Math.acsc
Method
acsc(x)
Compute the inverse cosecant of x
, where the output is in radians.
Base.Math.acot
Method
acot(x)
Compute the inverse cotangent of x
, where the output is in radians.
Base.Math.asecd
Function
asecd(x)
Compute the inverse secant of x
, where the output is in degrees.
Base.Math.acscd
Function
acscd(x)
Compute the inverse cosecant of x
, where the output is in degrees.
Base.Math.acotd
Function
acotd(x)
Compute the inverse cotangent of x
, where the output is in degrees.
Base.Math.sech
Method
sech(x)
Compute the hyperbolic secant of x
.
Base.Math.csch
Method
csch(x)
Compute the hyperbolic cosecant of x
.
Base.Math.coth
Method
coth(x)
Compute the hyperbolic cotangent of x
.
Base.asinh
Method
asinh(x)
Compute the inverse hyperbolic sine of x
.
Base.acosh
Method
acosh(x)
Compute the inverse hyperbolic cosine of x
.
Base.atanh
Method
atanh(x)
Compute the inverse hyperbolic tangent of x
.
Base.Math.asech
Method
asech(x)
Compute the inverse hyperbolic secant of x
.
Base.Math.acsch
Method
acsch(x)
Compute the inverse hyperbolic cosecant of x
.
Base.Math.acoth
Method
acoth(x)
Compute the inverse hyperbolic cotangent of x
.
Base.Math.sinc
Function
sinc(x)
Compute $\sin(\pi x) / (\pi x)$ if $x \neq 0$, and $1$ if $x = 0$.
source
Base.Math.cosc
Function
cosc(x)
Compute $\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if $x \neq 0$, and $0$ if $x = 0$. This is the derivative of sinc(x)
.
Base.Math.deg2rad
Function
deg2rad(x)
Convert x
from degrees to radians.
Examples
julia> deg2rad(90) 1.5707963267948966source
Base.Math.rad2deg
Function
rad2deg(x)
Convert x
from radians to degrees.
Examples
julia> rad2deg(pi) 180.0source
Base.Math.hypot
Function
hypot(x, y)
Compute the hypotenuse $\sqrt{x^2+y^2}$ avoiding overflow and underflow.
Examples
julia> a = 10^10; julia> hypot(a, a) 1.4142135623730951e10 julia> √(a^2 + a^2) # a^2 overflows ERROR: DomainError with -2.914184810805068e18: sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)). Stacktrace: [...]source
hypot(x...)
Compute the hypotenuse $\sqrt{\sum x_i^2}$ avoiding overflow and underflow.
source
Base.log
Method
log(x)
Compute the natural logarithm of x
. Throws DomainError
for negative Real
arguments. Use complex negative arguments to obtain complex results.
Examples
julia> log(2) 0.6931471805599453 julia> log(-3) ERROR: DomainError with -3.0: log will only return a complex result if called with a complex argument. Try log(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...]source
Base.log
Method
log(b,x)
Compute the base b
logarithm of x
. Throws DomainError
for negative Real
arguments.
Examples
julia> log(4,8) 1.5 julia> log(4,2) 0.5 julia> log(-2, 3) ERROR: DomainError with -2.0: log will only return a complex result if called with a complex argument. Try log(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...] julia> log(2, -3) ERROR: DomainError with -3.0: log will only return a complex result if called with a complex argument. Try log(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...]
Base.log2
Function
log2(x)
Compute the logarithm of x
to base 2. Throws DomainError
for negative Real
arguments.
Examples
julia> log2(4) 2.0 julia> log2(10) 3.321928094887362 julia> log2(-2) ERROR: DomainError with -2.0: NaN result for non-NaN input. Stacktrace: [1] nan_dom_err at ./math.jl:325 [inlined] [...]source
Base.log10
Function
log10(x)
Compute the logarithm of x
to base 10. Throws DomainError
for negative Real
arguments.
Examples
julia> log10(100) 2.0 julia> log10(2) 0.3010299956639812 julia> log10(-2) ERROR: DomainError with -2.0: NaN result for non-NaN input. Stacktrace: [1] nan_dom_err at ./math.jl:325 [inlined] [...]source
Base.log1p
Function
log1p(x)
Accurate natural logarithm of 1+x
. Throws DomainError
for Real
arguments less than -1.
Examples
julia> log1p(-0.5) -0.6931471805599453 julia> log1p(0) 0.0 julia> log1p(-2) ERROR: DomainError with -2.0: log1p will only return a complex result if called with a complex argument. Try log1p(Complex(x)). Stacktrace: [1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31 [...]source
Base.Math.frexp
Function
frexp(val)
Return (x,exp)
such that x
has a magnitude in the interval $[1/2, 1)$ or 0, and val
is equal to $x \times 2^{exp}$.
Base.exp
Method
exp(x)
Compute the natural base exponential of x
, in other words $e^x$.
Examples
julia> exp(1.0) 2.718281828459045source
Base.exp2
Function
exp2(x)
Compute the base 2 exponential of x
, in other words $2^x$.
Examples
julia> exp2(5) 32.0source
Base.exp10
Function
exp10(x)
Compute the base 10 exponential of x
, in other words $10^x$.
Examples
julia> exp10(2) 100.0source
exp10(x)
Compute $10^x$.
Examples
julia> exp10(2) 100.0 julia> exp10(0.2) 1.5848931924611136source
Base.Math.ldexp
Function
ldexp(x, n)
Compute $x \times 2^n$.
Examples
julia> ldexp(5., 2) 20.0source
Base.Math.modf
Function
modf(x)
Return a tuple (fpart, ipart)
of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Examples
julia> modf(3.5) (0.5, 3.0) julia> modf(-3.5) (-0.5, -3.0)source
Base.expm1
Function
expm1(x)
Accurately compute $e^x-1$.
source
Base.round
Method
round([T,] x, [r::RoundingMode]) round(x, [r::RoundingMode]; digits::Integer=0, base = 10) round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)
Rounds the number x
.
Without keyword arguments, x
is rounded to an integer value, returning a value of type T
, or of the same type of x
if no T
is provided. An InexactError
will be thrown if the value is not representable by T
, similar to convert
.
If the digits
keyword argument is provided, it rounds to the specified number of digits after the decimal place (or before if negative), in base base
.
If the sigdigits
keyword argument is provided, it rounds to the specified number of significant digits, in base base
.
The RoundingMode
r
controls the direction of the rounding; the default is RoundNearest
, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. Note that round
may give incorrect results if the global rounding mode is changed (see rounding
).
Examples
julia> round(1.7) 2.0 julia> round(Int, 1.7) 2 julia> round(1.5) 2.0 julia> round(2.5) 2.0 julia> round(pi; digits=2) 3.14 julia> round(pi; digits=3, base=2) 3.125 julia> round(123.456; sigdigits=2) 120.0 julia> round(357.913; sigdigits=4, base=2) 352.0
Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, the Float64
value represented by 1.15
is actually less than 1.15, yet will be rounded to 1.2.
Examples
julia> x = 1.15 1.15 julia> @sprintf "%.20f" x "1.14999999999999991118" julia> x < 115//100 true julia> round(x, digits=1) 1.2
Extensions
To extend round
to new numeric types, it is typically sufficient to define Base.round(x::NewType, r::RoundingMode)
.
Base.Rounding.RoundingMode
Type
RoundingMode
A type used for controlling the rounding mode of floating point operations (via rounding
/setrounding
functions), or as optional arguments for rounding to the nearest integer (via the round
function).
Currently supported rounding modes are:
-
RoundNearest
(default) RoundNearestTiesAway
RoundNearestTiesUp
RoundToZero
-
RoundFromZero
(BigFloat
only) RoundUp
RoundDown
Base.Rounding.RoundNearest
Constant
RoundNearest
The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
source
Base.Rounding.RoundNearestTiesAway
Constant
RoundNearestTiesAway
Rounds to nearest integer, with ties rounded away from zero (C/C++ round
behaviour).
Base.Rounding.RoundNearestTiesUp
Constant
RoundNearestTiesUp
Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round
behaviour).
Base.Rounding.RoundToZero
Constant
RoundToZero
round
using this rounding mode is an alias for trunc
.
Base.Rounding.RoundFromZero
Constant
RoundFromZero
Rounds away from zero. This rounding mode may only be used with T == BigFloat
inputs to round
.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero) 1.06source
Base.Rounding.RoundUp
Constant
RoundUp
round
using this rounding mode is an alias for ceil
.
Base.Rounding.RoundDown
Constant
RoundDown
round
using this rounding mode is an alias for floor
.
Base.round
Method
round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]) round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; digits=, base=10) round(z::Complex[, RoundingModeReal, [RoundingModeImaginary]]; sigdigits=, base=10)
Return the nearest integral value of the same type as the complex-valued z
to z
, breaking ties using the specified RoundingMode
s. The first RoundingMode
is used for rounding the real components while the second is used for rounding the imaginary components.
Example
julia> round(3.14 + 4.5im) 3.0 + 4.0imsource
Base.ceil
Function
ceil([T,] x) ceil(x; digits::Integer= [, base = 10]) ceil(x; sigdigits::Integer= [, base = 10])
ceil(x)
returns the nearest integral value of the same type as x
that is greater than or equal to x
.
ceil(T, x)
converts the result to type T
, throwing an InexactError
if the value is not representable.
digits
, sigdigits
and base
work as for round
.
Base.floor
Function
floor([T,] x) floor(x; digits::Integer= [, base = 10]) floor(x; sigdigits::Integer= [, base = 10])
floor(x)
returns the nearest integral value of the same type as x
that is less than or equal to x
.
floor(T, x)
converts the result to type T
, throwing an InexactError
if the value is not representable.
digits
, sigdigits
and base
work as for round
.
Base.trunc
Function
trunc([T,] x) trunc(x; digits::Integer= [, base = 10]) trunc(x; sigdigits::Integer= [, base = 10])
trunc(x)
returns the nearest integral value of the same type as x
whose absolute value is less than or equal to x
.
trunc(T, x)
converts the result to type T
, throwing an InexactError
if the value is not representable.
digits
, sigdigits
and base
work as for round
.
Base.unsafe_trunc
Function
unsafe_trunc(T, x)
Return the nearest integral value of type T
whose absolute value is less than or equal to x
. If the value is not representable by T
, an arbitrary value will be returned.
Base.min
Function
min(x, y, ...)
Return the minimum of the arguments. See also the minimum
function to take the minimum element from a collection.
Examples
julia> min(2, 5, 1) 1source
Base.max
Function
max(x, y, ...)
Return the maximum of the arguments. See also the maximum
function to take the maximum element from a collection.
Examples
julia> max(2, 5, 1) 5source
Base.minmax
Function
minmax(x, y)
Return (min(x,y), max(x,y))
. See also: extrema
that returns (minimum(x), maximum(x))
.
Examples
julia> minmax('c','b') ('b', 'c')source
Base.Math.clamp
Function
clamp(x, lo, hi)
Return x
if lo <= x <= hi
. If x > hi
, return hi
. If x < lo
, return lo
. Arguments are promoted to a common type.
Examples
julia> clamp.([pi, 1.0, big(10.)], 2., 9.) 3-element Array{BigFloat,1}: 3.141592653589793238462643383279502884197169399375105820974944592307816406286198 2.0 9.0 julia> clamp.([11,8,5],10,6) # an example where lo > hi 3-element Array{Int64,1}: 6 6 10source
Base.Math.clamp!
Function
clamp!(array::AbstractArray, lo, hi)
Restrict values in array
to the specified range, in-place. See also clamp
.
Base.abs
Function
abs(x)
The absolute value of x
.
When abs
is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when abs
is applied to the minimum representable value of a signed integer. That is, when x == typemin(typeof(x))
, abs(x) == x < 0
, not -x
as might be expected.
Examples
julia> abs(-3) 3 julia> abs(1 + im) 1.4142135623730951 julia> abs(typemin(Int64)) -9223372036854775808source
Base.Checked.checked_abs
Function
Base.checked_abs(x)
Calculates abs(x)
, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int
) cannot represent abs(typemin(Int))
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_neg
Function
Base.checked_neg(x)
Calculates -x
, checking for overflow errors where applicable. For example, standard two's complement signed integers (e.g. Int
) cannot represent -typemin(Int)
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_add
Function
Base.checked_add(x, y)
Calculates x+y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_sub
Function
Base.checked_sub(x, y)
Calculates x-y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_mul
Function
Base.checked_mul(x, y)
Calculates x*y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_div
Function
Base.checked_div(x, y)
Calculates div(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_rem
Function
Base.checked_rem(x, y)
Calculates x%y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_fld
Function
Base.checked_fld(x, y)
Calculates fld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_mod
Function
Base.checked_mod(x, y)
Calculates mod(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.checked_cld
Function
Base.checked_cld(x, y)
Calculates cld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
source
Base.Checked.add_with_overflow
Function
Base.add_with_overflow(x, y) -> (r, f)
Calculates r = x+y
, with the flag f
indicating whether overflow has occurred.
Base.Checked.sub_with_overflow
Function
Base.sub_with_overflow(x, y) -> (r, f)
Calculates r = x-y
, with the flag f
indicating whether overflow has occurred.
Base.Checked.mul_with_overflow
Function
Base.mul_with_overflow(x, y) -> (r, f)
Calculates r = x*y
, with the flag f
indicating whether overflow has occurred.
Base.abs2
Function
abs2(x)
Squared absolute value of x
.
Examples
julia> abs2(-3) 9source
Base.copysign
Function
copysign(x, y) -> z
Return z
which has the magnitude of x
and the same sign as y
.
Examples
julia> copysign(1, -2) -1 julia> copysign(-1, 2) 1source
Base.sign
Function
sign(x)
Return zero if x==0
and $x/|x|$ otherwise (i.e., ±1 for real x
).
Base.signbit
Function
signbit(x)
Returns true
if the value of the sign of x
is negative, otherwise false
.
Examples
julia> signbit(-4) true julia> signbit(5) false julia> signbit(5.5) false julia> signbit(-4.1) truesource
Base.flipsign
Function
flipsign(x, y)
Return x
with its sign flipped if y
is negative. For example abs(x) = flipsign(x,x)
.
Examples
julia> flipsign(5, 3) 5 julia> flipsign(5, -3) -5source
Base.sqrt
Method
sqrt(x)
Return $\sqrt{x}$. Throws DomainError
for negative Real
arguments. Use complex negative arguments instead. The prefix operator √
is equivalent to sqrt
.
Examples
julia> sqrt(big(81)) 9.0 julia> sqrt(big(-81)) ERROR: DomainError with -81.0: NaN result for non-NaN input. Stacktrace: [1] sqrt(::BigFloat) at ./mpfr.jl:501 [...] julia> sqrt(big(complex(-81))) 0.0 + 9.0imsource
Base.isqrt
Function
isqrt(n::Integer)
Integer square root: the largest integer m
such that m*m <= n
.
julia> isqrt(5) 2source
Base.Math.cbrt
Function
cbrt(x::Real)
Return the cube root of x
, i.e. $x^{1/3}$. Negative values are accepted (returning the negative real root when $x < 0$).
The prefix operator ∛
is equivalent to cbrt
.
Examples
julia> cbrt(big(27)) 3.0 julia> cbrt(big(-27)) -3.0source
Base.real
Method
real(z)
Return the real part of the complex number z
.
Examples
julia> real(1 + 3im) 1source
Base.imag
Function
imag(z)
Return the imaginary part of the complex number z
.
Examples
julia> imag(1 + 3im) 3source
Base.reim
Function
reim(z)
Return both the real and imaginary parts of the complex number z
.
Examples
julia> reim(1 + 3im) (1, 3)source
Base.conj
Function
conj(z)
Compute the complex conjugate of a complex number z
.
Examples
julia> conj(1 + 3im) 1 - 3imsource
Base.angle
Function
angle(z)
Compute the phase angle in radians of a complex number z
.
Examples
julia> rad2deg(angle(1 + im)) 45.0 julia> rad2deg(angle(1 - im)) -45.0 julia> rad2deg(angle(-1 - im)) -135.0source
Base.cis
Function
cis(z)
Return $\exp(iz)$.
Examples
julia> cis(π) ≈ -1 truesource
Base.binomial
Function
binomial(n::Integer, k::Integer)
The binomial coefficient $\binom{n}{k}$, being the coefficient of the $k$th term in the polynomial expansion of $(1+x)^n$.
If $n$ is non-negative, then it is the number of ways to choose k
out of n
items:
where $n!$ is the factorial
function.
If $n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]Examples
julia> binomial(5, 3) 10 julia> factorial(5) ÷ (factorial(5-3) * factorial(3)) 10 julia> binomial(-5, 3) -35
See also
External links
- Binomial coeffient on Wikipedia.
Base.factorial
Function
factorial(n::Integer)
Factorial of n
. If n
is an Integer
, the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow if n
is not small, but you can use factorial(big(n))
to compute the result exactly in arbitrary precision.
Examples
julia> factorial(6) 720 julia> factorial(21) ERROR: OverflowError: 21 is too large to look up in the table Stacktrace: [...] julia> factorial(big(21)) 51090942171709440000
See also
External links
- Factorial on Wikipedia.
Base.gcd
Function
gcd(x,y)
Greatest common (positive) divisor (or zero if x
and y
are both zero).
Examples
julia> gcd(6,9) 3 julia> gcd(6,-9) 3source
Base.lcm
Function
lcm(x,y)
Least common (non-negative) multiple.
Examples
julia> lcm(2,3) 6 julia> lcm(-2,3) 6source
Base.gcdx
Function
gcdx(x,y)
Computes the greatest common (positive) divisor of x
and y
and their Bézout coefficients, i.e. the integer coefficients u
and v
that satisfy $ux+vy = d = gcd(x,y)$. $gcdx(x,y)$ returns $(d,u,v)$.
Examples
julia> gcdx(12, 42) (6, -3, 1) julia> gcdx(240, 46) (2, -9, 47)
Bézout coefficients are not uniquely defined. gcdx
returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficients u
and v
are minimal in the sense that $|u| < |y/d|$ and $|v| < |x/d|$. Furthermore, the signs of u
and v
are chosen so that d
is positive. For unsigned integers, the coefficients u
and v
might be near their typemax
, and the identity then holds only via the unsigned integers' modulo arithmetic.
Base.ispow2
Function
ispow2(n::Integer) -> Bool
Test whether n
is a power of two.
Examples
julia> ispow2(4) true julia> ispow2(5) falsesource
Base.nextpow
Function
nextpow(a, x)
The smallest a^n
not less than x
, where n
is a non-negative integer. a
must be greater than 1, and x
must be greater than 0.
Examples
julia> nextpow(2, 7) 8 julia> nextpow(2, 9) 16 julia> nextpow(5, 20) 25 julia> nextpow(4, 16) 16
See also prevpow
.
Base.prevpow
Function
prevpow(a, x)
The largest a^n
not greater than x
, where n
is a non-negative integer. a
must be greater than 1, and x
must not be less than 1.
Examples
julia> prevpow(2, 7) 4 julia> prevpow(2, 9) 8 julia> prevpow(5, 20) 5 julia> prevpow(4, 16) 16
See also nextpow
.
Base.nextprod
Function
nextprod([k_1, k_2,...], n)
Next integer greater than or equal to n
that can be written as $\prod k_i^{p_i}$ for integers $p_1$, $p_2$, etc.
Examples
julia> nextprod([2, 3], 105) 108 julia> 2^2 * 3^3 108source
Base.invmod
Function
invmod(x,m)
Take the inverse of x
modulo m
: y
such that $x y = 1 \pmod m$, with $div(x,y) = 0$. This is undefined for $m = 0$, or if $gcd(x,m) \neq 1$.
Examples
julia> invmod(2,5) 3 julia> invmod(2,3) 2 julia> invmod(5,6) 5source
Base.powermod
Function
powermod(x::Integer, p::Integer, m)
Compute $x^p \pmod m$.
Examples
julia> powermod(2, 6, 5) 4 julia> mod(2^6, 5) 4 julia> powermod(5, 2, 20) 5 julia> powermod(5, 2, 19) 6 julia> powermod(5, 3, 19) 11source
Base.ndigits
Function
ndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integer n
written in base base
(base
must not be in [-1, 0, 1]
), optionally padded with zeros to a specified size (the result will never be less than pad
).
Examples
julia> ndigits(12345) 5 julia> ndigits(1022, base=16) 3 julia> string(1022, base=16) "3fe" julia> ndigits(123, pad=5) 5source
Base.widemul
Function
widemul(x, y)
Multiply x
and y
, giving the result as a larger type.
Examples
julia> widemul(Float32(3.), 4.) 12.0source
Base.Math.@evalpoly
Macro
@evalpoly(z, c...)
Evaluate the polynomial $\sum_k c[k] z^{k-1}$ for the coefficients c[1]
, c[2]
, ...; that is, the coefficients are given in ascending order by power of z
. This macro expands to efficient inline code that uses either Horner's method or, for complex z
, a more efficient Goertzel-like algorithm.
Examples
julia> @evalpoly(3, 1, 0, 1) 10 julia> @evalpoly(2, 1, 0, 1) 5 julia> @evalpoly(2, 1, 1, 1) 7source
Base.FastMath.@fastmath
Macro
@fastmath expr
Execute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets the LLVM Fast-Math flags, and corresponds to the -ffast-math
option in clang. See the notes on performance annotations for more details.
Examples
julia> @fastmath 1+2 3 julia> @fastmath(sin(3)) 0.1411200080598672source
© 2009–2019 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and other contributors
Licensed under the MIT License.
https://docs.julialang.org/en/v1.1.1/base/math/