Formula Cookbook
A formula is a package definition written in Ruby. It can be created with brew create <URL>
where <URL>
is a zip or tarball, installed with brew install <formula>
, and debugged with brew install --debug --verbose <formula>
. Formulae use the Formula API which provides various Homebrew-specific helpers.
Homebrew terminology
Term | Description | Example |
---|---|---|
Formula | The package definition | /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/Formula/foo.rb |
Keg | The installation prefix of a Formula | /usr/local/Cellar/foo/0.1 |
opt prefix | A symlink to the active version of a Keg | /usr/local/opt/foo |
Cellar | All Kegs are installed here | /usr/local/Cellar |
Tap | A Git repository of Formulae and/or commands | /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core |
Bottle | Pre-built Keg used instead of building from source | qt-4.8.4.catalina.bottle.tar.gz |
Cask | An extension of Homebrew to install macOS native apps | /Applications/MacDown.app/Contents/SharedSupport/bin/macdown |
Brew Bundle | An extension of Homebrew to describe dependencies | brew 'myservice', restart_service: true |
An introduction
Homebrew uses Git for downloading updates and contributing to the project.
Homebrew installs to the Cellar
and then symlinks some of the installation into /usr/local
so that other programs can see what’s going on. We suggest you brew ls
a few of the kegs in your Cellar to see how it is all arranged.
Packages are installed according to their formulae, which live in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/Formula
. Check out a simple one, e.g. brew edit etl
(or etl
) or a more advanced one, e.g. brew edit git
(or git
).
Basic instructions
Make sure you run brew update
before you start. This turns your Homebrew installation into a Git repository.
Before submitting a new formula make sure your package:
- meets all our Acceptable Formulae requirements
- isn’t already in Homebrew (check
brew search <formula>
) - isn’t already waiting to be merged (check the issue tracker)
- is still supported by upstream (i.e. doesn’t require extensive patching)
- has a stable, tagged version (i.e. not just a GitHub repository with no versions)
- passes all
brew audit --new-formula <formula>
tests
Before submitting a new formula make sure you read over our contribution guidelines.
Grab the URL
Run brew create
with a URL to the source tarball:
brew create https://example.com/foo-0.1.tar.gz
This creates /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/Formula/foo.rb
and opens it in your EDITOR
. It’ll look something like:
class Foo < Formula desc "" homepage "" url "https://example.com/foo-0.1.tar.gz" sha256 "85cc828a96735bdafcf29eb6291ca91bac846579bcef7308536e0c875d6c81d7" license "" # depends_on "cmake" => :build def install # ENV.deparallelize system "./configure", "--disable-debug", "--disable-dependency-tracking", "--disable-silent-rules", "--prefix=#{prefix}" # system "cmake", ".", *std_cmake_args system "make", "install" end test do system "false" end end
If brew
said Warning: Version cannot be determined from URL
when doing the create
step, you’ll need to explicitly add the correct version
to the formula and then save the formula.
Homebrew will try to guess the formula’s name from its URL. If it fails to do so you can override this with brew create <URL> --set-name <name>
.
Fill in the homepage
We don’t accept formulae without a homepage
!
An SSL/TLS (https) homepage
is preferred, if one is available.
Try to summarise from the homepage
what the formula does in the desc
ription. Note that the desc
ription is automatically prepended with the formula name.
Fill in the license
We don’t accept new formulae into Homebrew/homebrew-core without a license
!
We only accept formulae that use a Debian Free Software Guidelines license or are released into the public domain following DFSG Guidelines on Public Domain software.
Use the license identifier from the SPDX License List e.g. license "BSD-2-Clause"
, or use license :public_domain
for public domain software.
Use :any_of
, :all_of
or :with
to describe complex license expressions. :any_of
should be used when the user can choose which license to use. :all_of
should be used when the user must use all licenses. :with
should be used to specify a valid SPDX exception. Add +
to an identifier to indicate that the formulae can be licensed under later versions of the same license.
Check out the License Guidelines for examples of complex license expressions in Homebrew formulae.
Check the build system
brew install --interactive foo
You’re now at a new prompt with the tarball extracted to a temporary sandbox.
Check the package’s README
. Does the package install with ./configure
, cmake
, or something else? Delete the commented out cmake
lines if the package uses ./configure
.
If no compilation is involved and there are no :build
dependencies, add the line bottle :unneeded
since bottles are unnecessary in this case. Otherwise, a bottle
block will be added by Homebrew’s CI upon merging the formula’s pull-request.
Check for dependencies
The README
probably tells you about dependencies and Homebrew or macOS probably already has them. You can check for Homebrew dependencies with brew search
. Some common dependencies that macOS comes with:
libexpat
libGL
libiconv
libpcap
libxml2
python
ruby
There are plenty of others; check /usr/lib
for them.
We generally try not to duplicate system libraries and complicated tools in core Homebrew but we do duplicate some commonly used tools.
Special exceptions are OpenSSL and LibreSSL. Things that use either should be built using Homebrew’s shipped equivalent and our Brew Test Bot’s post-install audit
will warn if it detects you haven’t done this.
Homebrew’s OpenSSL is keg_only
to avoid conflicting with the system so sometimes formulae need to have environment variables set or special configuration flags passed to locate our OpenSSL. You can see this mechanism in the clamav
formula. Usually this is unnecessary because Homebrew sets up our build environment to favour finding keg_only
formulae first.
Important: $(brew --prefix)/bin
is NOT on the PATH
during formula installation. If you have dependencies at build time, you must specify them and brew
will add them to the PATH
or create a Requirement
.
Specifying other formulae as dependencies
class Foo < Formula depends_on "pkg-config" depends_on "jpeg" depends_on "readline" => :recommended depends_on "gtk+" => :optional depends_on "httpd" => [:build, :test] depends_on :xcode => "9.3" end
A String (e.g. "jpeg"
) specifies a formula dependency.
A Symbol (e.g. :xcode
) specifies a Requirement
which can be fulfilled by one or more formulae, casks or other system-wide installed software (e.g. Xcode).
A Hash (e.g. =>
) adds information to a dependency. Given a String or Symbol, the value can be one or more of the following values:
-
:build
means that dependency is a build-time only dependency so it can be skipped when installing from a bottle or when listing missing dependencies usingbrew missing
. -
:test
means that dependency is only required when runningbrew test
. -
:optional
generates an implicitwith-foo
option for the formula. This means that, givendepends_on "foo" => :optional
, the user must pass--with-foo
in order to use the dependency. -
:recommended
generates an implicitwithout-foo
option, meaning that the dependency is enabled by default and the user must pass--without-foo
to disable this dependency. The default description can be overridden using the normal option syntax (in this case, the option declaration must precede the dependency):option "with-foo", "Compile with foo bindings" # This overrides the generated description if you want to depends_on "foo" => :optional # Generated description would otherwise be "Build with foo support"
- Some
Requirement
s can also take a string specifying their minimum version that the formula depends on.
Note: :optional
and :recommended
are not allowed in Homebrew/homebrew-core as they are not tested by CI.
Specifying conflicts with other formulae
Sometimes there’s hard conflict between formulae, and it can’t be avoided or circumvented with keg_only
.
A good example formula for minor conflict is mbedtls
, which ships and compiles a “Hello World” executable. This is obviously non-essential to mbedtls
’s functionality, and conflict with the popular GNU hello
formula would be overkill, so we just remove it during the installation process.
pdftohtml
provides an example of a serious conflict, where both formula ship an identically-named binary that is essential to functionality, so a conflicts_with
is preferable.
As a general rule, conflicts_with
should be a last-resort option. It’s a fairly blunt instrument.
The syntax for a conflict that can’t be worked around is:
conflicts_with "blueduck", because: "yellowduck also ships a duck binary"
Formulae revisions
In Homebrew we sometimes accept formulae updates that don’t include a version bump. These include resource updates, new patches or fixing a security issue with a formula.
Occasionally, these updates require a forced-recompile of the formula itself or its dependents to either ensure formulae continue to function as expected or to close a security issue. This forced-recompile is known as a revision
and is inserted underneath the homepage
/url
/sha256
block.
When a dependent of a formula fails against a new version of that dependency it must receive a revision
. An example of such failure can be seen here and the fix here.
revision
s are also used for formulae that move from the system OpenSSL to the Homebrew-shipped OpenSSL without any other changes to that formula. This ensures users aren’t left exposed to the potential security issues of the outdated OpenSSL. An example of this can be seen in this commit.
Version scheme changes
Sometimes formulae have version schemes that change such that a direct comparison between two versions no longer produces the correct result. For example, a project might be version 13
and then decide to become 1.0.0
. As 13
is translated to 13.0.0
by our versioning system by default this requires intervention.
When a version scheme of a formula fails to recognise a new version as newer it must receive a version_scheme
. An example of this can be seen here.
Double-check for dependencies
When you already have a lot of formulae installed, it’s easy to miss a common dependency. You can double-check which libraries a binary links to with the otool
command (perhaps you need to use xcrun otool
):
$ otool -L /usr/local/bin/ldapvi /usr/local/bin/ldapvi: /usr/local/opt/openssl/lib/libssl.1.0.0.dylib (compatibility version 1.0.0, current version 1.0.0) /usr/local/opt/openssl/lib/libcrypto.1.0.0.dylib (compatibility version 1.0.0, current version 1.0.0) /usr/local/lib/libglib-2.0.0.dylib (compatibility version 4201.0.0, current version 4201.0.0) /usr/local/opt/gettext/lib/libintl.8.dylib (compatibility version 10.0.0, current version 10.2.0) /usr/local/opt/readline/lib/libreadline.6.dylib (compatibility version 6.0.0, current version 6.3.0) /usr/local/lib/libpopt.0.dylib (compatibility version 1.0.0, current version 1.0.0) /usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current version 5.4.0) /System/Library/Frameworks/LDAP.framework/Versions/A/LDAP (compatibility version 1.0.0, current version 2.4.0) /usr/lib/libresolv.9.dylib (compatibility version 1.0.0, current version 1.0.0) /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1213.0.0)
Specifying gems, Python modules, Go projects, etc. as dependencies
Homebrew doesn’t package already-packaged language-specific libraries. These should be installed directly from gem
/cpan
/pip
etc.
If you’re installing an application then use resource
s for all language-specific dependencies:
class Foo < Formula resource "pycrypto" do url "https://files.pythonhosted.org/packages/60/db/645aa9af249f059cc3a368b118de33889219e0362141e75d4eaf6f80f163/pycrypto-2.6.1.tar.gz" sha256 "f2ce1e989b272cfcb677616763e0a2e7ec659effa67a88aa92b3a65528f60a3c" end def install resource("pycrypto").stage { system "python", *Language::Python.setup_install_args(libexec/"vendor") } end end
jrnl
is an example of a formula that does this well. The end result means the user doesn’t have to use pip
or Python and can just run jrnl
.
For Python formulae, running brew update-python-resources <formula>
will automatically add the necessary resource
stanzas for the dependencies of your Python application to the formula. Note that brew update-python-resources
is run automatically by brew create
if you pass the --python
flag. If brew update-python-resources
is unable to determine the correct resource
stanzas, homebrew-pypi-poet is a good third-party alternative that may help.
Install the formula
brew install --verbose --debug foo
--debug
will ask you to open an interactive shell if the build fails so you can try to figure out what went wrong.
Check the top of the e.g. ./configure
output. Some configure scripts do not recognise e.g. --disable-debug
. If you see a warning about it, remove the option from the formula.
Add a test to the formula
Add a valid test to the test do
block of the formula. This will be run by brew test foo
and the Brew Test Bot.
The test do
block automatically creates and changes to a temporary directory which is deleted after run. You can access this Pathname
with the testpath
function. The environment variable HOME
is set to testpath
within the test do
block.
We want tests that don’t require any user input and test the basic functionality of the application. For example foo build-foo input.foo
is a good test and (despite their widespread use) foo --version
and foo --help
are bad tests. However, a bad test is better than no test at all.
See cmake
for an example of a formula with a good test. The formula writes a basic CMakeLists.txt
file into the test directory then calls CMake to generate Makefiles. This test checks that CMake doesn’t e.g. segfault during basic operation.
You can check that the output is as expected with assert_equal
or assert_match
on the output of the Formula assertions such as in this example from the envv formula:
assert_equal "mylist=A:C; export mylist", shell_output("#{bin}/envv del mylist B").strip
You can also check that an output file was created:
assert_predicate testpath/"output.txt", :exist?
Some advice for specific cases:
- If the formula is a library, compile and run some simple code that links against it. It could be taken from upstream’s documentation / source examples. A good example is
tinyxml2
, which writes a small C++ source file into the test directory, compiles and links it against the tinyxml2 library and finally checks that the resulting program runs successfully. - If the formula is for a GUI program, try to find some function that runs as command-line only, like a format conversion, reading or displaying a config file, etc.
- If the software cannot function without credentials or requires a virtual machine, docker instance, etc. to run, a test could be to try to connect with invalid credentials (or without credentials) and confirm that it fails as expected. This is prefered over mocking a dependency.
- Homebrew comes with a number of standard test fixtures, including numerous sample images, sounds, and documents in various formats. You can get the file path to a test fixture with
test_fixtures("test.svg")
. - If your test requires a test file that isn’t a standard test fixture, you can install it from a source repository during the
test
phase with a resource block, like this:
resource("testdata") do url "https://example.com/input.foo" sha256 "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" end test do resource("testdata").stage do assert_match "OK", shell_output("#{bin}/foo build-foo input.foo") end end
Manuals
Homebrew expects to find manual pages in #{prefix}/share/man/...
, and not in #{prefix}/man/...
.
Some software installs to man
instead of share/man
, so check the output and add a "--mandir=#{man}"
to the ./configure
line if needed.
Caveats
In case there are specific issues with the Homebrew packaging (compared to how the software is installed from other sources) a caveats
block can be added to the formula to warn users. This can indicate non-standard install paths, an example from the ruby
formula:
==> Caveats By default, binaries installed by gem will be placed into: /usr/local/lib/ruby/gems/bin You may want to add this to your PATH.
A quick word on naming
Name the formula like the project markets the product. So it’s pkg-config
, not pkgconfig
; sdl_mixer
, not sdl-mixer
or sdlmixer
.
The only exception is stuff like “Apache Ant”. Apache sticks “Apache” in front of everything, but we use the formula name ant
. We only include the prefix in cases like gnuplot
(because it’s part of the name) and gnu-go
(because everyone calls it “GNU Go”—nobody just calls it “Go”). The word “Go” is too common and there are too many implementations of it.
If you’re not sure about the name, check its homepage, Wikipedia page and what Debian calls it.
When Homebrew already has a formula called foo
we typically do not accept requests to replace that formula with something else also named foo
. This is to avoid both confusing and surprising users’ expectations.
When two formulae share an upstream name, e.g. AESCrypt and AES Crypt the newer formula must typically adapt its name to avoid conflict with the current formula.
If you’re still not sure, just commit. We’ll apply some arbitrary rule and make a decision ????.
When importing classes, Homebrew will require the formula and then create an instance of the class. It does this by assuming the formula name can be directly converted to the class name using a regexp
. The rules are simple:
-
foo-bar.rb
=>FooBar
-
foobar.rb
=>Foobar
Thus, if you change the name of the class, you must also rename the file. Filenames should be all lowercase, and class names should be the strict CamelCase equivalent, e.g. formulae gnu-go
and sdl_mixer
become classes GnuGo
and SdlMixer
, even if part of their name is an acronym.
Add aliases by creating symlinks in an Aliases
directory in the tap root.
Audit the formula
You can run brew audit --strict --online
to test formulae for adherence to Homebrew house style. The audit
command includes warnings for trailing whitespace, preferred URLs for certain source hosts, and a lot of other style issues. Fixing these warnings before committing will make the process a lot quicker for everyone.
New formulae being submitted to Homebrew should run brew audit --new-formula foo
. This command is performed by the Brew Test Bot on new submissions as part of the automated build and test process, and highlights more potential issues than the standard audit.
Use brew info
and check if the version guessed by Homebrew from the URL is correct. Add an explicit version
if not.
Commit
Everything is built on Git, so contribution is easy:
brew update # required in more ways than you think (initialises the brew git repository if you don't already have it) cd $(brew --repo homebrew/core) # Create a new git branch for your formula so your pull request is easy to # modify if any changes come up during review. git checkout -b <some-descriptive-name> origin/master git add Formula/foo.rb git commit
The established standard for Git commit messages is:
- the first line is a commit summary of 50 characters or less
- two (2) newlines, then
- explain the commit thoroughly.
At Homebrew, we like to put the name of the formula up front like so: foobar 7.3 (new formula)
. This may seem crazy short, but you’ll find that forcing yourself to summarise the commit encourages you to be atomic and concise. If you can’t summarise it in 50-80 characters, you’re probably trying to commit two commits as one. For a more thorough explanation, please read Tim Pope’s excellent blog post, A Note About Git Commit Messages.
The preferred commit message format for simple version updates is foobar 7.3
and for fixes is foobar: fix flibble matrix.
.
Ensure you reference any relevant GitHub issue, e.g. Closes #12345
in the commit message. Homebrew’s history is the first thing future contributors will look to when trying to understand the current state of formulae they’re interested in.
Push
Now you just need to push your commit to GitHub.
If you haven’t forked Homebrew yet, go to the homebrew-core
repository and hit the Fork button.
If you have already forked Homebrew on GitHub, then you can manually push (just make sure you have been pulling from the Homebrew/homebrew-core
master):
git push https://github.com/myname/homebrew-core/ <what-you-called-your-branch>
Now, open a pull request for your changes.
- One formula per commit; one commit per formula.
- Keep merge commits out of the pull request.
Convenience tools
Messaging
Three commands are provided for displaying informational messages to the user:
-
ohai
for general info -
opoo
for warning messages -
odie
for error messages and immediately exiting
In particular, when a test needs to be performed before installation use odie
to bail out gracefully. For example:
if build.with?("qt") && build.with?("qt5") odie "Options --with-qt and --with-qt5 are mutually exclusive." end system "make", "install"
bin.install "foo"
You’ll see stuff like this in some formulae. This moves the file foo
into the formula’s bin
directory (/usr/local/Cellar/pkg/0.1/bin
) and makes it executable (chmod 0555 foo
).
You can also rename the file during the installation process. This can be useful for adding a prefix to binaries that would otherwise cause conflicts with another formula, or for removing a file extension. For example, to install foo.py
into the formula’s bin
directory (/usr/local/Cellar/pkg/0.1/bin
) as just foo
instead of foo.py
:
bin.install "foo.py" => "foo"
inreplace
inreplace
is a convenience function that can edit files in-place. For example:
inreplace "path", before, after
before
and after
can be strings or regular expressions. You should use the block form if you need to make multiple replacements in a file:
inreplace "path" do |s| s.gsub! /foo/, "bar" s.gsub! "123", "456" end
Make sure you modify s
! This block ignores the returned value.
inreplace
should be used instead of patches when patching something that will never be accepted upstream, e.g. making the software’s build system respect Homebrew’s installation hierarchy. If it’s something that affects both Homebrew and MacPorts (i.e. macOS specific) it should be turned into an upstream submitted patch instead.
If you need modify variables in a Makefile
, rather than using inreplace
, pass them as arguments to make
:
system "make", "target", "VAR2=value1", "VAR2=value2", "VAR3=values can have spaces"
system "make", "CC=#{ENV.cc}", "PREFIX=#{prefix}"
Note that values can contain unescaped spaces if you use the multiple-argument form of system
.
Patches
While patch
es should generally be avoided, sometimes they are temporarily necessary.
When patch
ing (i.e. fixing header file inclusion, fixing compiler warnings, etc.) the first thing to do is check whether or not the upstream project is aware of the issue. If not, file a bug report and/or submit your patch for inclusion. We may sometimes still accept your patch before it was submitted upstream but by getting the ball rolling on fixing the upstream issue you reduce the length of time we have to carry the patch around.
Always justify a patch
with a code comment! Otherwise, nobody will know when it is safe to remove the patch, or safe to leave it in when updating the formula. The comment should include a link to the relevant upstream issue(s).
External patch
es can be declared using resource-style blocks:
patch do url "https://example.com/example_patch.diff" sha256 "85cc828a96735bdafcf29eb6291ca91bac846579bcef7308536e0c875d6c81d7" end
A strip level of -p1
is assumed. It can be overridden using a symbol argument:
patch :p0 do url "https://example.com/example_patch.diff" sha256 "85cc828a96735bdafcf29eb6291ca91bac846579bcef7308536e0c875d6c81d7" end
patch
es can be declared in stable
and head
blocks. Always use a block instead of a conditional, i.e. stable do ... end
instead of if build.stable? then ... end
.
stable do # some other things... patch do url "https://example.com/example_patch.diff" sha256 "85cc828a96735bdafcf29eb6291ca91bac846579bcef7308536e0c875d6c81d7" end end
Embedded (END) patches can be declared like so:
patch :DATA patch :p0, :DATA
with the patch data included at the end of the file:
__END__ diff --git a/foo/showfigfonts b/foo/showfigfonts index 643c60b..543379c 100644 --- a/foo/showfigfonts +++ b/foo/showfigfonts @@ -14,6 +14,7 @@ …
Patches can also be embedded by passing a string. This makes it possible to provide multiple embedded patches while making only some of them conditional.
patch :p0, "..."
In embedded patches, the string “HOMEBREW_PREFIX” is replaced with the value of the constant HOMEBREW_PREFIX
before the patch is applied.
Creating the diff
brew install --interactive --git foo # (make some edits) git diff | pbcopy brew edit foo
Now just paste into the formula after __END__
. Instead of git diff | pbcopy
, for some editors git diff >> path/to/your/formula/foo.rb
might help you ensure that the patch is not touched, e.g. white space removal, indentation changes, etc.
Advanced formula tricks
If anything isn’t clear, you can usually figure it out by grep
ping the $(brew --repo homebrew/core)
directory. Please submit a pull request to amend this document if you think it will help!
livecheck
blocks
When brew livecheck
is unable to identify versions for a formula, we can control its behavior using a livecheck
block. Here is a simple example to check a page for links containing a filename like example-1.2.tar.gz
:
livecheck do url "https://www.example.com/downloads/" regex(/href=.*?example[._-]v?(\d+(?:\.\d+)+)\.t/i) end
For url
/regex
guidelines and additional livecheck
block examples, refer to the brew livecheck
documentation. For more technical information on the methods used in a livecheck
block, please refer to the Livecheck
class documentation.
Unstable versions (head
)
Formulae can specify an alternate download for the upstream project’s head
(master
/trunk
).
head
head
URLs (activated by passing --HEAD
) build the development cutting edge. Specifying it is easy:
class Foo < Formula head "https://github.com/mxcl/lastfm-cocoa.git" end
Homebrew understands git
, svn
, and hg
URLs, and has a way to specify cvs
repositories as a URL as well. You can test whether the head
is being built with build.head?
.
To use a specific commit, tag, or branch from a repository, specify head
with the :tag
and :revision
, :revision
, or :branch
option, like so:
class Foo < Formula head "https://github.com/some/package.git", :revision => "090930930295adslfknsdfsdaffnasd13" # or :branch => "develop" (the default is "master") # or :tag => "1_0_release", # :revision => "090930930295adslfknsdfsdaffnasd13" end
Compiler selection
Sometimes a package fails to build when using a certain compiler. Since recent Xcode versions no longer include a GCC compiler we cannot simply force the use of GCC. Instead, the correct way to declare this is the fails_with
DSL method. A properly constructed fails_with
block documents the latest compiler build version known to cause compilation to fail, and the cause of the failure. For example:
fails_with :clang do build 211 cause "Miscompilation resulting in segfault on queries" end
build
takes a Fixnum (an integer; you can find this number in your brew --config
output). cause
takes a String, and the use of heredocs is encouraged to improve readability and allow for more comprehensive documentation.
fails_with
declarations can be used with any of :gcc
, :llvm
, and :clang
. Homebrew will use this information to select a working compiler (if one is available).
Specifying the download strategy explicitly
To use one of Homebrew’s built-in download strategies, specify the :using =>
flag on a url
or head
. For example:
class Python3 < Formula homepage "https://www.python.org/" url "https://www.python.org/ftp/python/3.4.3/Python-3.4.3.tar.xz" sha256 "b5b3963533768d5fc325a4d7a6bd6f666726002d696f1d399ec06b043ea996b8" head "https://hg.python.org/cpython", :using => :hg
Homebrew offers anonymous download strategies.
:using value | download strategy |
---|---|
:bzr | BazaarDownloadStrategy |
:curl | CurlDownloadStrategy |
:cvs | CVSDownloadStrategy |
:fossil | FossilDownloadStrategy |
:git | GitDownloadStrategy |
:hg | MercurialDownloadStrategy |
:nounzip | NoUnzipCurlDownloadStrategy |
:post | CurlPostDownloadStrategy |
:svn | SubversionDownloadStrategy |
If you need more control over the way files are downloaded and staged, you can create a custom download strategy and specify it using the url
method’s :using
option:
class MyDownloadStrategy < SomeHomebrewDownloadStrategy def fetch(timeout: nil, **options) opoo "Unhandled options in #{self.class}#fetch: #{options.keys.join(", ")}" unless options.empty? # downloads output to `temporary_path` end end class Foo < Formula url "something", :using => MyDownloadStrategy end
Just moving some files
When your code in the install function is run, the current working directory is set to the extracted tarball.
So it is easy to just move some files:
prefix.install "file1", "file2"
Or everything:
prefix.install Dir["output/*"]
Generally we’d rather you were specific about what files or directories need to be installed rather than installing everything.
Variables for directory locations
Name | Default | Example |
---|---|---|
HOMEBREW_PREFIX | /usr/local | |
prefix | #{HOMEBREW_PREFIX}/Cellar/#{name}/#{version} | /usr/local/Cellar/foo/0.1 |
opt_prefix | #{HOMEBREW_PREFIX}/opt/#{name} | /usr/local/opt/foo |
bin | #{prefix}/bin | /usr/local/Cellar/foo/0.1/bin |
doc | #{prefix}/share/doc/foo | /usr/local/Cellar/foo/0.1/share/doc/foo |
include | #{prefix}/include | /usr/local/Cellar/foo/0.1/include |
info | #{prefix}/share/info | /usr/local/Cellar/foo/0.1/share/info |
lib | #{prefix}/lib | /usr/local/Cellar/foo/0.1/lib |
libexec | #{prefix}/libexec | /usr/local/Cellar/foo/0.1/libexec |
man | #{prefix}/share/man | /usr/local/Cellar/foo/0.1/share/man |
man[1-8] | #{prefix}/share/man/man[1-8] | /usr/local/Cellar/foo/0.1/share/man/man[1-8] |
sbin | #{prefix}/sbin | /usr/local/Cellar/foo/0.1/sbin |
share | #{prefix}/share | /usr/local/Cellar/foo/0.1/share |
pkgshare | #{prefix}/share/foo | /usr/local/Cellar/foo/0.1/share/foo |
etc | #{HOMEBREW_PREFIX}/etc | /usr/local/etc |
var | #{HOMEBREW_PREFIX}/var | /usr/local/var |
buildpath | A temporary directory somewhere on your system | /private/tmp/[formula-name]-0q2b/[formula-name] |
These can be used, for instance, in code such as
bin.install Dir["output/*"]
to move binaries into their correct location into the Cellar, and
man.mkpath
to create the directory structure for the manual page location.
To install man pages into specific locations, use man1.install "foo.1", "bar.1"
, man2.install "foo.2"
, etc.
Note that in the context of Homebrew, libexec
is reserved for private use by the formula and therefore is not symlinked into HOMEBREW_PREFIX
.
Adding optional steps
Note: option
s are not allowed in Homebrew/homebrew-core as they are not tested by CI.
If you want to add an option
:
class Yourformula < Formula ... option "with-ham", "Description of the option" option "without-spam", "Another description" depends_on "foo" => :optional # will automatically add a with-foo option ...
And then to define the effects the option
s have:
if build.with? "ham" # note, no "with" in the option name (it is added by the build.with? method) end if build.without? "ham" # works as you'd expect. True if `--without-ham` was given. end
option
names should be prefixed with the words with
or without
. For example, an option to run a test suite should be named --with-test
or --with-check
rather than --test
, and an option to enable a shared library --with-shared
rather than --shared
or --enable-shared
.
option
s that aren’t build.with?
or build.without?
should be deprecated with deprecated_option
. See wget
for an example.
File level operations
You can use the file utilities provided by Ruby’s FileUtils
. These are included in the Formula
class, so you do not need the FileUtils.
prefix to use them.
When creating symlinks, take special care to ensure they are relative symlinks. This makes it easier to create a relocatable bottle. For example, to create a symlink in bin
to an executable in libexec
, use
bin.install_symlink libexec/"name"
instead of:
ln_s libexec/"name", bin
The symlinks created by install_symlink
are guaranteed to be relative. ln_s
will only produce a relative symlink when given a relative path.
Handling files that should persist over formula upgrades
For example, Ruby 1.9’s gems should be installed to var/lib/ruby/
so that gems don’t need to be reinstalled when upgrading Ruby. You can usually do this with symlink trickery, or (ideally) a configure option.
Another example would be configuration files that should not be overwritten on package upgrades. If after installation you find that to-be-persisted configuration files are not copied but instead symlinked into /usr/local/etc/
from the Cellar, this can often be rectified by passing an appropriate argument to the package’s configure script. That argument will vary depending on a given package’s configure script and/or Makefile, but one example might be: --sysconfdir=#{etc}
launchd plist files
Homebrew provides two formula DSL methods for launchd plist files:
-
plist_name
will return e.g.homebrew.mxcl.<formula>
-
plist_path
will return e.g./usr/local/Cellar/foo/0.1/homebrew.mxcl.foo.plist
There is two ways to add plists to a formula, so that brew services
can pick it up:
- If the formula already provides a plist file the formula can install it into the prefix like so.
prefix.install_symlink "file.plist" => "#{plist_name}.plist"
- If the formula does not provide a plist you can add a plist using the following stanzas. This will define what the user can run manually instead of the launchd service.
plist_options manual: "#{HOMEBREW_PREFIX}/var/some/bin/stuff run"
This provides the actual plist file, see Apple’s plist(5) man page for more information.
def plist <<~EOS <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>Label</key> <string>#{plist_name}</string> <key>ProgramArguments</key> <array> <string>#{var}/some/bin/stuff</string> <string>run</string> </array> </dict> </plist> EOS end
Using environment variables
Homebrew has multiple levels of environment variable filtering which affects variables available to formulae.
Firstly, the overall environment in which Homebrew runs is filtered to avoid environment contamination breaking from-source builds (https://github.com/Homebrew/brew/issues/932). In particular, this process filters all but the given whitelisted variables, but allows environment variables prefixed with HOMEBREW_
. The specific implementation can be seen in bin/brew
.
The second level of filtering removes sensitive environment variables (such as credentials like keys, passwords or tokens) to avoid malicious subprocesses obtaining them (https://github.com/Homebrew/brew/pull/2524). This has the effect of preventing any such variables from reaching a formula’s Ruby code as they are filtered before it is called. The specific implementation can be seen in the ENV.clear_sensitive_environment!
method.
You can set environment variables in a formula’s install
method using ENV["VARIABLE_NAME"] = "VALUE"
. An example can be seen in the gh
formula. Environment variables can also be set temporarily using the with_env
method; any variables defined in the call to that method will be restored to their original values at the end of the block. An example can be seen in the csound
formula.
In summary, environment variables used by a formula need to conform to these filtering rules in order to be available.
Deprecating and disabling a formula
See our Deprecating, Disabling, and Removing Formulae documentation for more information about how and when to deprecate or disable a formula.
Updating formulae
Eventually a new version of the software will be released. In this case you should update the url
and sha256
. If a revision
line exists outside any bottle do
block it should be removed.
Leave the bottle do ... end
block as-is; our CI system will update it when we pull your change.
Check if the formula you are updating is a dependency for any other formulae by running brew uses <formula>
. If it is a dependency, run brew reinstall
for all the dependencies after it is installed and verify they work correctly.
Style guide
Homebrew wants to maintain a consistent Ruby style across all formulae mostly based on Ruby Style Guide. Other formulae may not have been updated to match this guide yet but all new ones should. Also:
- The order of methods in a formula should be consistent with other formulae (e.g.:
def install
goes beforedef post_install
). - An empty line is required before the
__END__
line.
Troubleshooting for people writing new formulae
Version detection fails
Homebrew tries to automatically determine the version
from the url
to avoid duplication. If the tarball has an unusual name you may need to manually assign the version
.
Bad makefiles
Not all projects have makefiles that will run in parallel so try to deparallelize by adding these lines to the install
method:
ENV.deparallelize system "make" # separate make and make install steps system "make", "install"
If that fixes it, please open an issue so that we can fix it for everyone.
Still won’t work?
Check out what MacPorts and Fink do:
brew search --macports foo brew search --fink foo
Superenv notes
superenv
is our “super environment” that isolates builds by removing /usr/local/bin
and all user PATH
s that are not essential for the build. It does this because user PATH
s are often full of stuff that breaks builds. superenv
also removes bad flags from the commands passed to clang
/gcc
and injects others (for example all keg_only
dependencies are added to the -I
and -L
flags).
Fortran
Some software requires a Fortran compiler. This can be declared by adding depends_on "gcc"
to a formula.
MPI
Formula requiring MPI should use OpenMPI by adding depends_on "open-mpi"
to the formula, rather than MPICH. These packages have conflicts and provide the same standardised interfaces. Choosing a default implementation and requiring it to be adopted allows software to link against multiple libraries that rely on MPI without creating un-anticipated incompatibilities due to differing MPI runtimes.
Linear algebra libraries
By default packages that require BLAS/LAPACK linear algebra interfaces should link to OpenBLAS using depends_on "openblas"
and passing -DBLA_VENDOR=OpenBLAS
to CMake (applies to CMake based formula only) rather than Apple’s Accelerate framework, or the default reference lapack implementation. Apple’s implementation of BLAS/LAPACK is outdated and may introduce hard-to-debug problems. The reference lapack
formula is fine, although it is not actively maintained or tuned. For this reason, formulae needing BLAS/LAPACK should link with OpenBLAS.
How to start over (reset to upstream master
)
Have you created a real mess in Git which stops you from creating a commit you want to submit to us? You might want to consider starting again from scratch. Your changes can be reset to the Homebrew master
branch by running:
git checkout -f master git reset --hard origin/master
© 2009–present Homebrew contributors
Licensed under the BSD 2-Clause License.
https://docs.brew.sh/Formula-Cookbook