11 External Term Format
11.1 Introduction
The external term format is mainly used in the distribution mechanism of Erlang.
As Erlang has a fixed number of types, there is no need for a programmer to define a specification for the external format used within some application. All Erlang terms have an external representation and the interpretation of the different terms is application-specific.
In Erlang the BIF erlang:term_to_binary/1,2
is used to convert a term into the external format. To convert binary data encoding to a term, the BIF erlang:binary_to_term/1
is used.
The distribution does this implicitly when sending messages across node boundaries.
The overall format of the term format is as follows:
1 | 1 | N |
131 | Tag | Data |
When messages are passed between connected nodes
and a distribution header
is used, the first byte containing the version number (131) is omitted from the terms that follow the distribution header. This is because the version number is implied by the version number in the distribution header.
The compressed term format is as follows:
1 | 1 | 4 | N |
131 | 80 | UncompressedSize | Zlib-compressedData |
Uncompressed size (unsigned 32-bit integer in big-endian byte order) is the size of the data before it was compressed. The compressed data has the following format when it has been expanded:
1 | Uncompressed Size |
Tag | Data |
As from ERTS 9.0 (OTP 20), atoms may contain any Unicode characters and are always encoded using the UTF-8 external formats ATOM_UTF8_EXT
or SMALL_ATOM_UTF8_EXT
. The old Latin-1 formats ATOM_EXT
and SMALL_ATOM_EXT
are deprecated and are only kept for backward compatibility when decoding terms encoded by older nodes.
Support for UTF-8 encoded atoms in the external format has been available since ERTS 5.10 (OTP R16). This abillity allows such old nodes to decode, store and encode any Unicode atoms received from a new OTP 20 node.
The maximum number of allowed characters in an atom is 255. In the UTF-8 case, each character can need 4 bytes to be encoded.
11.2 Distribution Header
As from ERTS 5.7.2 the old atom cache protocol was dropped and a new one was introduced. This protocol introduced the distribution header. Nodes with an ERTS version earlier than 5.7.2 can still communicate with new nodes, but no distribution header and no atom cache are used.
The distribution header only contains an atom cache reference section, but can in the future contain more information. The distribution header precedes one or more Erlang terms on the external format. For more information, see the documentation of the protocol between connected nodes
in the distribution protocol
documentation.
ATOM_CACHE_REF
entries with corresponding AtomCacheReferenceIndex
in terms encoded on the external format following a distribution header refer to the atom cache references made in the distribution header. The range is 0 <= AtomCacheReferenceIndex
< 255, that is, at most 255 different atom cache references from the following terms can be made.
The distribution header format is as follows:
1 | 1 | 1 | NumberOfAtomCacheRefs/2+1 | 0 | N | 0 |
131 | 68 | NumberOfAtomCacheRefs | Flags | AtomCacheRefs |
Flags
consist of NumberOfAtomCacheRefs/2+1
bytes, unless NumberOfAtomCacheRefs
is 0
. If NumberOfAtomCacheRefs
is 0
, Flags
and AtomCacheRefs
are omitted. Each atom cache reference has a half byte flag field. Flags corresponding to a specific AtomCacheReferenceIndex
are located in flag byte number AtomCacheReferenceIndex/2
. Flag byte 0 is the first byte after the NumberOfAtomCacheRefs
byte. Flags for an even AtomCacheReferenceIndex
are located in the least significant half byte and flags for an odd AtomCacheReferenceIndex
are located in the most significant half byte.
The flag field of an atom cache reference has the following format:
1 bit | 3 bits |
NewCacheEntryFlag | SegmentIndex |
The most significant bit is the NewCacheEntryFlag
. If set, the corresponding cache reference is new. The three least significant bits are the SegmentIndex
of the corresponding atom cache entry. An atom cache consists of 8 segments, each of size 256, that is, an atom cache can contain 2048 entries.
After flag fields for atom cache references, another half byte flag field is located with the following format:
3 bits | 1 bit |
CurrentlyUnused | LongAtoms |
The least significant bit in that half byte is flag LongAtoms
. If it is set, 2 bytes are used for atom lengths instead of 1 byte in the distribution header.
After the Flags
field follow the AtomCacheRefs
. The first AtomCacheRef
is the one corresponding to AtomCacheReferenceIndex
0. Higher indices follow in sequence up to index NumberOfAtomCacheRefs - 1
.
If the NewCacheEntryFlag
for the next AtomCacheRef
has been set, a NewAtomCacheRef
on the following format follows:
1 | 1 | 2 | Length |
InternalSegmentIndex | Length | AtomText |
InternalSegmentIndex
together with the SegmentIndex
completely identify the location of an atom cache entry in the atom cache. Length
is the number of bytes that AtomText
consists of. Length is a 2 byte big-endian integer if flag LongAtoms
has been set, otherwise a 1 byte integer. When distribution flag DFLAG_UTF8_ATOMS
has been exchanged between both nodes in the distribution handshake
, characters in AtomText
are encoded in UTF-8, otherwise in Latin-1. The following CachedAtomRef
s with the same SegmentIndex
and InternalSegmentIndex
as this NewAtomCacheRef
refer to this atom until a new NewAtomCacheRef
with the same SegmentIndex
and InternalSegmentIndex
appear.
For more information on encoding of atoms, see the note on UTF-8 encoded atoms
in the beginning of this section.
If the NewCacheEntryFlag
for the next AtomCacheRef
has not been set, a CachedAtomRef
on the following format follows:
1 |
InternalSegmentIndex |
InternalSegmentIndex
together with the SegmentIndex
identify the location of the atom cache entry in the atom cache. The atom corresponding to this CachedAtomRef
is the latest NewAtomCacheRef
preceding this CachedAtomRef
in another previously passed distribution header.
11.3 atom_cache_ref
1 | 1 |
82 | AtomCacheReferenceIndex |
Refers to the atom with AtomCacheReferenceIndex
in the distribution header
.
11.4 small_integer_ext
1 | 1 |
97 | Int |
Unsigned 8-bit integer.
11.5 integer_ext
1 | 4 |
98 | Int |
Signed 32-bit integer in big-endian format.
11.6 float_ext
1 | 31 |
99 | Float string |
A float is stored in string format. The format used in sprintf to format the float is "%.20e" (there are more bytes allocated than necessary). To unpack the float, use sscanf with format "%lf".
This term is used in minor version 0 of the external format; it has been superseded by NEW_FLOAT_EXT
.
11.7 reference_ext
1 | N | 4 | 1 |
101 | Node | ID | Creation |
Encodes a reference object (an object generated with erlang:make_ref/0
). The Node
term is an encoded atom, that is, ATOM_UTF8_EXT
, SMALL_ATOM_UTF8_EXT
, or ATOM_CACHE_REF
. The ID
field contains a big-endian unsigned integer, but is to be regarded as uninterpreted data, as this field is node-specific. Creation
is a byte containing a node serial number, which makes it possible to separate old (crashed) nodes from a new one.
In ID
, only 18 bits are significant; the rest are to be 0. In Creation
, only two bits are significant; the rest are to be 0. See NEW_REFERENCE_EXT
.
11.8 port_ext
1 | N | 4 | 1 |
102 | Node | ID | Creation |
Encodes a port object (obtained from erlang:open_port/2
). The ID
is a node-specific identifier for a local port. Port operations are not allowed across node boundaries. The Creation
works just like in REFERENCE_EXT
.
11.9 pid_ext
1 | N | 4 | 4 | 1 |
103 | Node | ID | Serial | Creation |
Encodes a process identifier object (obtained from erlang:spawn/3
or friends). The ID
and Creation
fields works just like in REFERENCE_EXT
, while the Serial
field is used to improve safety. In ID
, only 15 bits are significant; the rest are to be 0.
11.10 small_tuple_ext
1 | 1 | N |
104 | Arity | Elements |
Encodes a tuple. The Arity
field is an unsigned byte that determines how many elements that follows in section Elements
.
11.11 large_tuple_ext
1 | 4 | N |
105 | Arity | Elements |
Same as SMALL_TUPLE_EXT
except that Arity
is an unsigned 4 byte integer in big-endian format.
11.12 map_ext
1 | 4 | N |
116 | Arity | Pairs |
Encodes a map. The Arity
field is an unsigned 4 byte integer in big-endian format that determines the number of key-value pairs in the map. Key and value pairs (Ki => Vi
) are encoded in section Pairs
in the following order: K1, V1, K2, V2,..., Kn, Vn
. Duplicate keys are not allowed within the same map.
As from Erlang/OTP 17.0
11.13 nil_ext
1 |
106 |
The representation for an empty list, that is, the Erlang syntax []
.
11.14 string_ext
1 | 2 | Len |
107 | Length | Characters |
String does not have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer in the range 0-255) more efficiently over the distribution. As field Length
is an unsigned 2 byte integer (big-endian), implementations must ensure that lists longer than 65535 elements are encoded as LIST_EXT
.
11.15 list_ext
1 | 4 | ||
108 | Length | Elements | Tail |
Length
is the number of elements that follows in section Elements
. Tail
is the final tail of the list; it is NIL_EXT
for a proper list, but can be any type if the list is improper (for example, [a|b]
).
11.16 binary_ext
1 | 4 | Len |
109 | Len | Data |
Binaries are generated with bit syntax expression or with erlang:list_to_binary/1
, erlang:term_to_binary/1
, or as input from binary ports. The Len
length field is an unsigned 4 byte integer (big-endian).
11.17 small_big_ext
1 | 1 | 1 | n |
110 | n | Sign | d(0) ... d(n-1) |
Bignums are stored in unary form with a Sign
byte, that is, 0 if the binum is positive and 1 if it is negative. The digits are stored with the least significant byte stored first. To calculate the integer, the following formula can be used:
B
= 256
(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))
11.18 large_big_ext
1 | 4 | 1 | n |
111 | n | Sign | d(0) ... d(n-1) |
Same as SMALL_BIG_EXT
except that the length field is an unsigned 4 byte integer.
11.19 new_reference_ext
1 | 2 | N | 1 | N' |
114 | Len | Node | Creation | ID ... |
Node
and Creation
are as in REFERENCE_EXT
.
ID
contains a sequence of big-endian unsigned integers (4 bytes each, so N'
is a multiple of 4), but is to be regarded as uninterpreted data.
N'
= 4 * Len
.
In the first word (4 bytes) of ID
, only 18 bits are significant, the rest are to be 0. In Creation
, only two bits are significant, the rest are to be 0.
NEW_REFERENCE_EXT
was introduced with distribution version 4. In version 4, N'
is to be at most 12.
See REFERENCE_EXT
.
11.20 fun_ext
1 | 4 | N1 | N2 | N3 | N4 | N5 |
117 | NumFree | Pid | Module | Index | Uniq | Free vars ... |
Pid
-
A process identifier as in
PID_EXT
. Represents the process in which the fun was created. Module
-
Encoded as an atom, using
ATOM_UTF8_EXT
,SMALL_ATOM_UTF8_EXT
, orATOM_CACHE_REF
. This is the module that the fun is implemented in. Index
-
An integer encoded using
SMALL_INTEGER_EXT
orINTEGER_EXT
. It is typically a small index into the module's fun table. Uniq
-
An integer encoded using
SMALL_INTEGER_EXT
orINTEGER_EXT
.Uniq
is the hash value of the parse for the fun. Free vars
-
NumFree
number of terms, each one encoded according to its type.
11.21 new_fun_ext
1 | 4 | 1 | 16 | 4 | 4 | N1 | N2 | N3 | N4 | N5 |
112 | Size | Arity | Uniq | Index | NumFree | Module | OldIndex | OldUniq | Pid | Free Vars |
This is the new encoding of internal funs: fun F/A
and fun(Arg1,..) -> ... end
.
Size
-
The total number of bytes, including field
Size
. Arity
-
The arity of the function implementing the fun.
Uniq
-
The 16 bytes MD5 of the significant parts of the Beam file.
Index
-
An index number. Each fun within a module has an unique index.
Index
is stored in big-endian byte order. NumFree
-
The number of free variables.
Module
-
Encoded as an atom, using
ATOM_UTF8_EXT
,SMALL_ATOM_UTF8_EXT
, orATOM_CACHE_REF
. Is the module that the fun is implemented in. OldIndex
-
An integer encoded using
SMALL_INTEGER_EXT
orINTEGER_EXT
. Is typically a small index into the module's fun table. OldUniq
-
An integer encoded using
SMALL_INTEGER_EXT
orINTEGER_EXT
.Uniq
is the hash value of the parse tree for the fun. Pid
-
A process identifier as in
PID_EXT
. Represents the process in which the fun was created. Free vars
-
NumFree
number of terms, each one encoded according to its type.
11.22 export_ext
1 | N1 | N2 | N3 |
113 | Module | Function | Arity |
This term is the encoding for external funs: fun M:F/A
.
Module
and Function
are atoms (encoded using ATOM_UTF8_EXT
, SMALL_ATOM_UTF8_EXT
, or ATOM_CACHE_REF
).
Arity
is an integer encoded using SMALL_INTEGER_EXT
.
11.23 bit_binary_ext
1 | 4 | 1 | Len |
77 | Len | Bits | Data |
This term represents a bitstring whose length in bits does not have to be a multiple of 8. The Len
field is an unsigned 4 byte integer (big-endian). The Bits
field is the number of bits (1-8) that are used in the last byte in the data field, counting from the most significant bit to the least significant.
11.24 new_float_ext
1 | 8 |
70 | IEEE float |
A float is stored as 8 bytes in big-endian IEEE format.
This term is used in minor version 1 of the external format.
11.25 atom_utf8_ext
1 | 2 | Len |
118 | Len | AtomName |
An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len
bytes containing the AtomName
encoded in UTF-8.
For more information on encoding of atoms, see the note on UTF-8 encoded atoms
in the beginning of this section.
11.26 small_atom_utf8_ext
1 | 1 | Len |
119 | Len | AtomName |
An atom is stored with a 1 byte unsigned length, followed by Len
bytes containing the AtomName
encoded in UTF-8. Longer atoms encoded in UTF-8 can be represented using ATOM_UTF8_EXT
.
For more information on encoding of atoms, see the note on UTF-8 encoded atoms
in the beginning of this section.
11.27 ATOM_EXT (deprecated)
1 | 2 | Len |
100 | Len | AtomName |
An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len
numbers of 8-bit Latin-1 characters that forms the AtomName
. The maximum allowed value for Len
is 255.
11.28 SMALL_ATOM_EXT (deprecated)
1 | 1 | Len |
115 | Len | AtomName |
An atom is stored with a 1 byte unsigned length, followed by Len
numbers of 8-bit Latin-1 characters that forms the AtomName
.
SMALL_ATOM_EXT
was introduced in ERTS 5.7.2 and require an exchange of distribution flag DFLAG_SMALL_ATOM_TAGS
in the distribution handshake
.
© 2010–2017 Ericsson AB
Licensed under the Apache License, Version 2.0.